0000000000540238
AUTHOR
Youyan Wan
Uniqueness of positive solutions to some Nonlinear Neumann Problems
Using the moving plane method, we obtain a Liouville type theorem for nonnegative solutions of the Neumann problem ⎧ ⎨ ⎩ div (ya∇u(x, y)) = 0, x ∈ Rn,y > 0, lim y→0+yauy(x, y) = −f(u(x, 0)), x ∈ Rn, under general nonlinearity assumptions on the function f : R → R for any constant a ∈ (−1, 1). peerReviewed
Uniqueness of positive solutions to some nonlinear Neumann problems
Abstract Using the moving plane method, we obtain a Liouville type theorem for nonnegative solutions of the Neumann problem { div ( y a ∇ u ( x , y ) ) = 0 , x ∈ R n , y > 0 , lim y → 0 + y a u y ( x , y ) = − f ( u ( x , 0 ) ) , x ∈ R n , under general nonlinearity assumptions on the function f : R → R for any constant a ∈ ( − 1 , 1 ) .