0000000000541460

AUTHOR

M. Mallaburn

Towards saturation of the electron-capture delayed fission probability : The new isotopes 240Es and 236Bk

The new neutron-deficient nuclei 240Es and 236Bk were synthesised at the gas-filled recoil separator RITU. They were identified by their radioactive decay chains starting from 240Es produced in the fusion–evaporation reaction 209Bi(34S,3n)240Es. Half-lives of 6(2) sand 22+13−6swere obtained for 240Es and 236Bk, respectively. Two groups of αparticles with energies Eα=8.19(3) MeVand 8.09(3) MeVwere unambiguously assigned to 240Es. Electron-capture delayed fission branches with probabilities of 0.16(6)and 0.04(2)were measured for 240Es and 236Bk, respectively. These new data show a continuation of the exponential increase of ECDF probabilities in more neutron-deficient isotopes. peerReviewed

research product

Identification of sub-μs isomeric states in the odd-odd nucleus 178Au

The neutron-deficient gold (Z=79) isotopes in the vicinity of the neutron midshell N=104 provide prolific examples of shape coexistence and isomerism at low excitation energy. They can be probed via a number of different experimental techniques. In this study, two new isomeric states with half-lives of 294(7) and 373(9) ns have been observed in the neutron-deficient odd-odd nuclide 178Au (N=99) in an experiment at the RITU gas-filled separator at JYFL, Jyväskylä. This result was achieved due to the use of a segmented planar germanium detector with a high efficiency at low energies. By applying the recoil-decay tagging technique, they were assigned to decay to two different long-lived α-deca…

research product

Experimental study of isomeric intruder ½+ states 197,203At

A newly observed isomeric intruder ½ + state [ T ½ = 3.5 ( 6 ) ms ] is identified in 203 At using a gas-filled recoil separator and fusion-evaporation reactions. The isomer is depopulated through a cascade of E 3 and mixed M 1 / E 2 transitions to the 9 / 2 − ground state, and it is suggested to originate from the π ( s ½ ) − 1 configuration. In addition, the structures above the ½ + state in 203 At and 197 At are studied using in-beam γ -ray spectroscopy, recoil-decay tagging, and recoil-isomer decay tagging methods. The ½ + state is fed from 3 / 2 + and 5 / 2 + states, and the origin of these states are discussed. peerReviewed

research product

Deformation of the proton emitter 113Cs from electromagnetic transition and proton-emission rates

The lifetime of the (11/2+) state in the band above the proton-emitting (3/2+) state in 113Cs has been measured to be τ = 24(6) ps from a recoil-decay-tagged differential-plunger experiment. The measured lifetime was used to deduce the deformation of the states using wave functions from a nonadiabatic quasiparticle model to independently calculate both proton-emission and electromagnetic γ -ray transition rates as a function of deformation. The only quadrupole deformation, which was able to reproduce the experimental excitation energies of the states, the electromagnetic decay rate of the (11/2+) state and the proton-emission rate of the (3/2+) state, was found to be β2 = 0.22(6). This defo…

research product

Spectroscopy of Kr 70 and isospin symmetry in the T=1 fpg shell nuclei SPECTROSCOPY of Kr 70 and ISOSPIN SYMMETRY ... D. M. DEBENHAM et al.

The recoil-β tagging technique has been used in conjunction with the Ca40(S32,2n) reaction at a beam energy of 88 MeV to identify transitions associated with the decay of the 2+ and, tentatively, 4+ states in the nucleus Kr70. These data are used, along with previously published data, to examine the triplet energy differences (TED) for the mass 70 isobars. The experimental TED values are compared with shell model calculations, performed with the JUN45 interaction in the fpg model space, that include a J=0 isospin nonconserving (INC) interaction with an isotensor strength of 100 keV. The agreement is found to be very good up to spin 4 and supports the expectation for analog states that all t…

research product