0000000000542005

AUTHOR

C. E. Demonchy

showing 5 related works from this author

Resonance State inH7

2007

The existence of the $^{7}\mathrm{H}$ nuclear system was investigated via a one-proton transfer reaction with a $^{8}\mathrm{He}$ beam at $15.4\mathrm{A}\text{ }\text{ }\mathrm{MeV}$ and a $^{12}\mathrm{C}$ gas target. The experimental setup was based on the active-target MAYA which allowed a complete reconstruction of the reaction kinematics. The existence of the $^{7}\mathrm{H}$ was confirmed with the identification of seven events where the system was formed with a resonance energy of ${0.57}_{\ensuremath{-}0.21}^{+0.42}\text{ }\text{ }\mathrm{MeV}$ above the $^{3}\mathrm{H}+4n$ threshold and a resonance width of ${0.09}_{\ensuremath{-}0.06}^{+0.94}\text{ }\text{ }\mathrm{MeV}$. This stu…

Physics010308 nuclear & particles physics0103 physical sciencesGeneral Physics and AstronomyResonanceState (functional analysis)Atomic physicsNuclear Experiment010306 general physicsNuclear system01 natural sciencesEnergy (signal processing)Physical Review Letters
researchProduct

Mass Measurements with the CSS2 and CIME cyclotrons at GANIL

2005

Commune avec ACEN; This paper presents two original direct mass-measurement techniques developed at GANIL using the CSS2 and CIME cyclotrons as high-resolution mass spectrometers. The mass measurement with the CSS2 cyclotron is based on a time-of-flight method along the spiral trajectory of the ions inside the cyclotron. The atomic mass excesses of 68Se and 80Y recently measured with this technique are -53.958(246) MeV and -60.971(180) MeV, respectively. The new mass-measurement technique with the CIME cyclotron is based on the sweep of the acceleration radio-frequency of the cyclotron. Tests with stable beams have been performed in order to study the accuracy of this new mass-measurement m…

Mass numberChemistryCyclotron020206 networking & telecommunicationsParticle accelerator02 engineering and technologyrp-process[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Mass spectrometryAtomic masslaw.inventionIonNuclear physicsAccelerationlaw29.20.Hm 29.30.-h 21.10.Dr 27.50.+e0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processing
researchProduct

Production and Characterization of the $^{7}$H Resonance

2006

Détecteur MAYA; International audience; The 7H resonance was produced via one-proton transfer reaction between a 8He beam at 15.4A MeV and a 12C gas target. The experimental setup was based on the active-target MAYA which allowed a complete reconstruction of the reaction kinematics. The characterization of the identified 7H events resulted in a resonance energy of 600 keV above the 3H+4n threshold and a resonance width of 100 keV. This study represents the first unambiguous proof of the existence of the 7H state.

PhysicsNuclear reactionnuclear resonancesHadronResonancechemistry.chemical_element020206 networking & telecommunications02 engineering and technologyhelium27.20.+n 25.70.Ef 25.40.Hs[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Baryonchemistrynuclei with mass number 6 to 19proton-nucleus reactions0202 electrical engineering electronic engineering information engineeringNuclear resonance fluorescence020201 artificial intelligence & image processingAtomic physicsNucleonHeliumBeam (structure)
researchProduct

Direct mass measurements ofSe68andY80

2008

The masses of neutron-deficient nuclides near the $N=Z$ line with $A=64\text{\ensuremath{-}}80$ have been determined using a direct time-of-flight technique which employed a cyclotron as a high-resolution spectrometer. The measured atomic masses for $^{68}\mathrm{Se}$ and $^{80}\mathrm{Y}$ were 67.9421(3) u and 79.9344(2) u, respectively. The new values agree with the 2003 Atomic Mass Evaluation. The result for $^{68}\mathrm{Se}$ confirms that this nucleus is a waiting point of the rp-process, and that for $^{80}\mathrm{Y}$ resolves the conflict between earlier measurements. Using the present results and the 2003 Atomic Mass Evaluation compilation, the empirical interaction between the last…

PhysicsNuclear and High Energy PhysicsSpectrometerProton010308 nuclear & particles physicsCyclotron01 natural sciencesAtomic masslaw.inventionNuclear magnetic resonancelaw0103 physical sciencesNeutronNuclideAtomic physicsNuclear Experiment010306 general physicsLine (formation)Physical Review C
researchProduct

Direct mass measurement of N $\sim$ Z nuclei with A = 64–80 using the CSS2 cyclotron

2005

International audience; The masses of ten neutron-deficient nuclides near the N = Z line with A = 64–80 have been measured with the direct time-of-flight technique using the CSS2 cyclotron as a high-resolution spectrometer. All measured masses agree with the 2003 atomic mass evaluation and are compared to the predictions of the finite range droplet model. The atomic mass excesses obtained for $^{68}$Se and $^{80}$Y are -53.958(246) MeV and -60.971(180) MeV, respectively. The new results for $^{68}$Se and $^(80}$Y are compared to other recent experimental values.

PhysicsNuclear and High Energy PhysicsSpectrometer010308 nuclear & particles physicsCyclotron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Finite range7. Clean energy01 natural sciencesMass measurementAtomic masslaw.inventionNuclear physicslaw0103 physical sciencesNuclide010306 general physicsNuclear ExperimentLine (formation)
researchProduct