0000000000542283

AUTHOR

E. Mannov

Water transport in epoxy/MWCNT composites

Moisture and water uptake of epoxy/multi-wall carbon nanotube (MWCNT) composites was studied in a wide range of atmosphere relative humidity and temperatures. Addition of up to 1 wt.% of MWCNTs into the neat epoxy resulted to the twofold decrease of the diffusivity, while the levels of moisture/water uptake remained unchanged. The positive effect on the reduction of the diffusion coefficient diminishes with the increase of temperature. Differences in the water transport properties and plasticization ability of the neat polymer and its nanocomposites are explained by the free volume considerations and the polymer–water interactions, which are verified by the results of thermomechanical analy…

research product

Strain-dependent electrical resistance of epoxy/MWCNT composite after hydrothermal aging

Abstract The electrical resistance of epoxy/multi-wall carbon nanotube (MWCNT) composites was studied under the effect of hygro- and hydrothermal aging. Tensile tests were conducted and the responses in the electrical resistance were measured during the tests for samples with different prehistory of environmental exposure. The overall pattern of the electrical resistance change versus strain for the samples tested consists of linear and nonlinear regions with a broad peak that precedes the ultimate strength of the sample and occurs at the onset of evident plastic deformation in the stress–strain curve. The composite with lower content of MWCNTs exhibits a more pronounced nonlinear behavior …

research product

Creep and recovery of epoxy/MWCNT nanocomposites

Abstract Creep and creep–recovery of epoxy/multi-wall carbon nanotube (MWCNT) composites was studied in a wide range of applied loads in order to evaluate the contribution of nanotubes on the time-dependent behaviour of the epoxy matrix. Incorporation of up to 1 wt.% of C150P MWCNTs has negligible influence on the elastic, viscoelastic and viscoplastic response of the epoxy system. No systematic changes of the creep characteristics depending on the content of nanotubes are noticed in the range of stresses from 0.3 up to 0.75 from the ultimate strength. Creep resistance and recovery performance of the epoxy matrix is not negatively affected by the addition of MWCNTs and the same analytical m…

research product