0000000000542786
AUTHOR
Scott Aaronson
Quantum lower bound for inverting a permutation with advice
Given a random permutation $f: [N] \to [N]$ as a black box and $y \in [N]$, we want to output $x = f^{-1}(y)$. Supplementary to our input, we are given classical advice in the form of a pre-computed data structure; this advice can depend on the permutation but \emph{not} on the input $y$. Classically, there is a data structure of size $\tilde{O}(S)$ and an algorithm that with the help of the data structure, given $f(x)$, can invert $f$ in time $\tilde{O}(T)$, for every choice of parameters $S$, $T$, such that $S\cdot T \ge N$. We prove a quantum lower bound of $T^2\cdot S \ge \tilde{\Omega}(\epsilon N)$ for quantum algorithms that invert a random permutation $f$ on an $\epsilon$ fraction of…
Is there a general theorem that tells us when we can hope for exponential speedups from quantum algorithms, and when we cannot? In this paper, we make two advances toward such a theorem, in the black-box model where most quantum algorithms operate. First, we show that for any problem that is invariant under permuting inputs and outputs (like the collision or the element distinctness problems), the quantum query complexity is at least the 9 th root of the classical randomized query complexity. This resolves a conjecture of Watrous from 2002. Second, inspired by recent work of O’Donnell et al. and Dinur et al., we conjecture that every bounded low-degree polynomial has a “highly influential” …
The Need for Structure in Quantum Speedups
Is there a general theorem that tells us when we can hope for exponential speedups from quantum algorithms, and when we cannot? In this paper, we make two advances toward such a theorem, in the black-box model where most quantum algorithms operate. First, we show that for any problem that is invariant under permuting inputs and outputs (like the collision or the element distinctness problems), the quantum query complexity is at least the 7th root of the classical randomized query complexity. (An earlier version of this paper gave the 9th root.) This resolves a conjecture of Watrous from 2002. Second, inspired by recent work of O'Donnell et al. (2005) and Dinur et al. (2006), we conjecture t…
Weak Parity
We study the query complexity of Weak Parity: the problem of computing the parity of an n-bit input string, where one only has to succeed on a 1/2 + ε fraction of input strings, but must do so with high probability on those inputs where one does succeed. It is well-known that n randomized queries and n/2 quantum queries are needed to compute parity on all inputs. But surprisingly, we give a randomized algorithm for Weak Parity that makes only O(n/log[superscript 0.246](1/ε)) queries, as well as a quantum algorithm that makes O(n/√log(1/ε)) queries. We also prove a lower bound of Ω(n/log(1/ε)) in both cases, as well as lower bounds of Ω(logn) in the randomized case and Ω(√logn) in the quantu…
Quantum search of spatial regions
Can Grover's algorithm speed up search of a physical region - for example a 2-D grid of size sqrt(n) by sqrt(n)? The problem is that sqrt(n) time seems to be needed for each query, just to move amplitude across the grid. Here we show that this problem can be surmounted, refuting a claim to the contrary by Benioff. In particular, we show how to search a d-dimensional hypercube in time O(sqrt n) for d at least 3, or O((sqrt n)(log n)^(3/2)) for d=2. More generally, we introduce a model of quantum query complexity on graphs, motivated by fundamental physical limits on information storage, particularly the holographic principle from black hole thermodynamics. Our results in this model include a…
Forrelation
We achieve essentially the largest possible separation between quantum and classical query complexities. We do so using a property-testing problem called Forrelation, where one needs to decide whether one Boolean function is highly correlated with the Fourier transform of a second function. This problem can be solved using 1 quantum query, yet we show that any randomized algorithm needs Ω(√(N)log(N)) queries (improving an Ω(N[superscript 1/4]) lower bound of Aaronson). Conversely, we show that this 1 versus Ω(√(N)) separation is optimal: indeed, any t-query quantum algorithm whatsoever can be simulated by an O(N[superscript 1-1/2t])-query randomized algorithm. Thus, resolving an open questi…