0000000000542789

AUTHOR

Xiao-ye Xu

showing 2 related works from this author

Experimental quantum entanglement and teleportation by tuning remote spatial indistinguishability of independent photons.

2020

Quantitative control of spatial indistinguishability of identical subsystems as a direct quantum resource at distant sites has not yet been experimentally proven. We design a setup capable of tuning remote spatial indistinguishability of two independent photons by individually adjusting their spatial distribution in two distant regions, leading to polarization entanglement from uncorrelated photons. This is achieved by spatially localized operations and classical communication on photons that meet only at the detectors. The amount of entanglement depends uniquely on the degree of spatial indistinguishability, quantified by an entropic measure I , which enables teleportation with fidelities …

PhysicsPhotonbusiness.industryDetectorQuantum entanglementPolarization (waves)PhotonTeleportationSettore FIS/03 - Fisica Della MateriaAtomic and Molecular Physics and OpticsEntanglementQuantum teleportationOpticsIndistinguishabilityPhoton polarizationQuantum information processingSpatial overlapStatistical physicsbusinessQuantumQuantum teleportationOptics letters
researchProduct

Activation of indistinguishability-based quantum coherence for enhanced metrological applications with particle statistics imprint

2022

Quantum coherence, an essential feature of quantum mechanics allowing quantum superposition of states, is a resource for quantum information processing. Coherence emerges in a fundamentally different way for nonidentical and identical particles. For the latter, a unique contribution exists linked to indistinguishability that cannot occur for nonidentical particles. Here, we experimentally demonstrate this additional contribution to quantum coherence with an optical setup, showing that its amount directly depends on the degree of indistinguishability, and exploiting it in a quantum phase discrimination protocol. Furthermore, the designed setup allows for simulating fermionic particles with p…

Multidisciplinaryidentical particles quantum coherence quantum metrologySettore FIS/03 - Fisica Della Materia
researchProduct