6533b824fe1ef96bd127fff7

RESEARCH PRODUCT

Experimental quantum entanglement and teleportation by tuning remote spatial indistinguishability of independent photons.

Kai SunGiuseppe CompagnoXiao-ye XuFarzam NosratiChuan-feng LiGuang-can GuoAlessia CastelliniYan WangRosario Lo FrancoJin-shi XuZheng-hao Liu

subject

PhysicsPhotonbusiness.industryDetectorQuantum entanglementPolarization (waves)PhotonTeleportationSettore FIS/03 - Fisica Della MateriaAtomic and Molecular Physics and OpticsEntanglementQuantum teleportationOpticsIndistinguishabilityPhoton polarizationQuantum information processingSpatial overlapStatistical physicsbusinessQuantumQuantum teleportation

description

Quantitative control of spatial indistinguishability of identical subsystems as a direct quantum resource at distant sites has not yet been experimentally proven. We design a setup capable of tuning remote spatial indistinguishability of two independent photons by individually adjusting their spatial distribution in two distant regions, leading to polarization entanglement from uncorrelated photons. This is achieved by spatially localized operations and classical communication on photons that meet only at the detectors. The amount of entanglement depends uniquely on the degree of spatial indistinguishability, quantified by an entropic measure I , which enables teleportation with fidelities above the classical threshold. The results open the way to viable indistinguishability-enhanced quantum information processing.

10.1364/ol.401735https://pubmed.ncbi.nlm.nih.gov/33258824