0000000000116155

AUTHOR

Zheng-hao Liu

0000-0001-8067-1477

showing 4 related works from this author

Remote entanglement distribution in a quantum network via multinode indistinguishability of photons

2022

Quantum networking relies on entanglement distribution between distant nodes, typically realized by swapping procedures. However, entanglement swapping is a demanding task in practice, mainly because of limited effectiveness of entangled photon sources and Bell-state measurements necessary to realize the process. Here we experimentally activate a remote distribution of two-photon polarization entanglement superseding the need for initial entangled pairs and traditional Bell-state measurements. This alternative procedure is accomplished thanks to the controlled spatial indistinguishability of four independent photons in three separated nodes of the network, which enables us to perform locali…

EntanglementQuantum PhysicsIdentical ParticleQuantum State DistributionTheoryofComputation_GENERALFOS: Physical sciencesQuantum NetworkQuantum PhysicsQuantum Physics (quant-ph)Settore FIS/03 - Fisica Della Materia
researchProduct

Proof-of-Principle Direct Measurement of Particle Statistical Phase

2022

The symmetrization postulate in quantum mechanics is formally reflected in the appearance of an exchange phase governing the symmetry of identical-particle global states under particle swapping. Many indirect measurements of this fundamental phase have been reported thus far, but a direct observation has been achieved only recently for photons. Here, we propose a general scheme capable of directly measuring the exchange phase of any type of particle (bosons, fermions, or anyons), exploiting the operational framework of spatially localized operations and classical communication. We experimentally implement it on an all-optical platform, providing a proof of principle for different simulated …

Quantum PhotonicsIndistinguishable particleGeneral Physics and AstronomyExchange PhaseSettore FIS/03 - Fisica Della MateriaPhysical Review Applied
researchProduct

Experimental quantum entanglement and teleportation by tuning remote spatial indistinguishability of independent photons.

2020

Quantitative control of spatial indistinguishability of identical subsystems as a direct quantum resource at distant sites has not yet been experimentally proven. We design a setup capable of tuning remote spatial indistinguishability of two independent photons by individually adjusting their spatial distribution in two distant regions, leading to polarization entanglement from uncorrelated photons. This is achieved by spatially localized operations and classical communication on photons that meet only at the detectors. The amount of entanglement depends uniquely on the degree of spatial indistinguishability, quantified by an entropic measure I , which enables teleportation with fidelities …

PhysicsPhotonbusiness.industryDetectorQuantum entanglementPolarization (waves)PhotonTeleportationSettore FIS/03 - Fisica Della MateriaAtomic and Molecular Physics and OpticsEntanglementQuantum teleportationOpticsIndistinguishabilityPhoton polarizationQuantum information processingSpatial overlapStatistical physicsbusinessQuantumQuantum teleportationOptics letters
researchProduct

Activation of indistinguishability-based quantum coherence for enhanced metrological applications with particle statistics imprint

2022

Quantum coherence, an essential feature of quantum mechanics allowing quantum superposition of states, is a resource for quantum information processing. Coherence emerges in a fundamentally different way for nonidentical and identical particles. For the latter, a unique contribution exists linked to indistinguishability that cannot occur for nonidentical particles. Here, we experimentally demonstrate this additional contribution to quantum coherence with an optical setup, showing that its amount directly depends on the degree of indistinguishability, and exploiting it in a quantum phase discrimination protocol. Furthermore, the designed setup allows for simulating fermionic particles with p…

Multidisciplinaryidentical particles quantum coherence quantum metrologySettore FIS/03 - Fisica Della Materia
researchProduct