0000000000116159
AUTHOR
Guang-can Guo
Remote entanglement distribution in a quantum network via multinode indistinguishability of photons
Quantum networking relies on entanglement distribution between distant nodes, typically realized by swapping procedures. However, entanglement swapping is a demanding task in practice, mainly because of limited effectiveness of entangled photon sources and Bell-state measurements necessary to realize the process. Here we experimentally activate a remote distribution of two-photon polarization entanglement superseding the need for initial entangled pairs and traditional Bell-state measurements. This alternative procedure is accomplished thanks to the controlled spatial indistinguishability of four independent photons in three separated nodes of the network, which enables us to perform locali…
Proof-of-Principle Direct Measurement of Particle Statistical Phase
The symmetrization postulate in quantum mechanics is formally reflected in the appearance of an exchange phase governing the symmetry of identical-particle global states under particle swapping. Many indirect measurements of this fundamental phase have been reported thus far, but a direct observation has been achieved only recently for photons. Here, we propose a general scheme capable of directly measuring the exchange phase of any type of particle (bosons, fermions, or anyons), exploiting the operational framework of spatially localized operations and classical communication. We experimentally implement it on an all-optical platform, providing a proof of principle for different simulated …
Experimental realization of high-fidelity teleportation via non-Markovian open quantum system
Open quantum systems and study of decoherence are important for our fundamental understanding of quantum physical phenomena. For practical purposes, there exists a large number of quantum protocols exploiting quantum resources, e.g. entanglement, which allows to go beyond what is possible to achieve by classical means. We combine concepts from open quantum systems and quantum information science, and give a proof-of-principle experimental demonstration -- with teleportation -- that it is possible to implement efficiently a quantum protocol via non-Markovian open system. The results show that, at the time of implementation of the protocol, it is not necessary to have the quantum resource in …
Experimental quantum entanglement and teleportation by tuning remote spatial indistinguishability of independent photons.
Quantitative control of spatial indistinguishability of identical subsystems as a direct quantum resource at distant sites has not yet been experimentally proven. We design a setup capable of tuning remote spatial indistinguishability of two independent photons by individually adjusting their spatial distribution in two distant regions, leading to polarization entanglement from uncorrelated photons. This is achieved by spatially localized operations and classical communication on photons that meet only at the detectors. The amount of entanglement depends uniquely on the degree of spatial indistinguishability, quantified by an entropic measure I , which enables teleportation with fidelities …
Experimental realization of high-fidelity teleportation via a non-Markovian open quantum system
Open quantum systems and study of decoherence are important for our fundamental understanding of quantum physical phenomena. For practical purposes, a large number of quantum protocols exist that exploit quantum resources, e.g., entanglement, which allows us to go beyond what is possible to achieve by classical means. We combine concepts from open quantum systems and quantum information science and give a proof-of-principle experimental demonstration-with teleportation-that it is possible to implement efficiently a quantum protocol via a non-Markovian open system. The results show that, at the time of implementation of the protocol, it is not necessary to have the quantum resource in the de…
Experimentally Realizing Efficient Quantum Control with Reinforcement Learning
Robust and high-precision quantum control is crucial but challenging for scalable quantum computation and quantum information processing. Traditional adiabatic control suffers severe limitations on gate performance imposed by environmentally induced noise because of a quantum system's limited coherence time. In this work, we experimentally demonstrate an alternative approach {to quantum control} based on deep reinforcement learning (DRL) on a trapped $^{171}\mathrm{Yb}^{+}$ ion. In particular, we find that DRL leads to fast and robust {digital quantum operations with running time bounded by shortcuts to adiabaticity} (STA). Besides, we demonstrate that DRL's robustness against both Rabi and…
Activation of indistinguishability-based quantum coherence for enhanced metrological applications with particle statistics imprint
Quantum coherence, an essential feature of quantum mechanics allowing quantum superposition of states, is a resource for quantum information processing. Coherence emerges in a fundamentally different way for nonidentical and identical particles. For the latter, a unique contribution exists linked to indistinguishability that cannot occur for nonidentical particles. Here, we experimentally demonstrate this additional contribution to quantum coherence with an optical setup, showing that its amount directly depends on the degree of indistinguishability, and exploiting it in a quantum phase discrimination protocol. Furthermore, the designed setup allows for simulating fermionic particles with p…
Experimental recovery of quantum correlations in absence of system-environment back-action
Revivals of quantum correlations in composite open quantum systems are a useful dynamical feature against detrimental effects of the environment. Their occurrence is attributed to flows of quantum information back and forth from systems to quantum environments. However, revivals also show up in models where the environment is classical, thus unable to store quantum correlations, and forbids system-environment back-action. This phenomenon opens basic issues about its interpretation involving the role of classical environments, memory effects, collective effects and system-environment correlations. Moreover, an experimental realization of back-action-free quantum revivals has applicative rele…