0000000000542841
AUTHOR
Jens Reimann
Filamin C accumulation is a strong but nonspecific immunohistochemical marker of core formation in muscle.
Filamin C is the muscle isoform of a group of large actin-crosslinking proteins. On the one hand, filamin C is associated with the Z-disk of the myofibrillar apparatus and binds to myotilin; on the other hand, it interacts with the sarcoglycan complex at the sarcolemma. Filamin C may be involved in reorganizing the cytoskeleton in response to signalling events and in muscle it may, in addition, fulfill structural functions at the Z-disk. An examination of biopsies from patients with multi-minicore myopathy, central core myopathy and neurogenic target fibers with core-like target formations (TF) revealed strong reactivity of all the cores and target formations with two different anti-filamin…
Correction: The genomic and clinical landscape of fetal akinesia
Abstract An amendment to this paper has been published and can be accessed via a link at the top of the paper.
The genomic and clinical landscape of fetal akinesia
International audience; Fetal akinesia has multiple clinical subtypes with over 160 gene associations, but the genetic etiology is not yet completely understood.Methods: In this study, 51 patients from 47 unrelated families were analyzed using next-generation sequencing (NGS) techniques aiming to decipher the genomic landscape of fetal akinesia (FA).Results: We have identified likely pathogenic gene variants in 37 cases and report 41 novel variants. Additionally, we report putative pathogenic variants in eight cases including nine novel variants. Our work identified 14 novel disease-gene associations for fetal akinesia: ADSSL1, ASAH1, ASPM, ATP2B3, EARS2, FBLN1, PRG4, PRICKLE1, ROR2, SETBP1…