0000000000542892

AUTHOR

William B. Walters

Nuclear structure theory for the astrophysical rp-process and r-process

Abstract The astrophysical processes of rapid-proton capture and rapid-neutron capture require the knowledge of many nuclear properties which are not known from experiment. I will describe two examples of how theoretical models are used to provide this input. The first of these uses the Hartree-Fock method for displacement energies to obtain the masses of proton-rich nuclei needed for the rp-process. The second uses a model for configuration mixing near 132 Sn to provide Q values and beta-decay lifetimes for the r-process.

research product

Production of radioactive Ag ion beams with a chemically selective laser ion source

Abstract We have developed a chemically selective laser ion source at the CERN-ISOLDE facility in order to study neutron-rich Ag nuclides. A pulsed laser system with high repetition rate has been used based on high-power coppe-vapour pump lasers and dye lasers. With this source significant reductions of the isobaric background has been achieved.

research product

Radioactive ion beams in the region of 100Sn and 78Ni at the NSCL

The regions around the doubly magic nuclei 100 Sn and 78 Ni are of great interest from a nuclear structure standpoint. These nuclei also play a key role in the astrophysical rp- and r-processes, respectively. Recently, nuclei in these regions were studied at the Coupled Cyclotron Facility at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University.

research product

β-decay studies of r-process nuclei at NSCL

Abstract Observed neutron-capture elemental abundances in metal-poor stars, along with ongoing analysis of the extremely metal-poor Eu-enriched sub-class provide new guidance for astrophysical models aimed at finding the r-process sites. The present paper emphasizes the importance of nuclear physics parameters entering in these models, particularly β -decay properties of neutron-rich nuclei. In this context, several r-process motivated β -decay experiments performed at the National Superconducting Cyclotron Laboratory (NSCL) are presented, including a summary of results and impact on model calculations.

research product

β-decay half-lives andβ-delayed neutron emission probabilities of nuclei in the regionA≲110, relevant for the r process

Measurements of $\ensuremath{\beta}$-decay properties of $A\ensuremath{\lesssim}110$ r-process nuclei have been completed at the National Superconducting Cyclotron Laboratory at Michigan State University. $\ensuremath{\beta}$-decay half-lives for $^{105}\mathrm{Y}$, $^{106,107}\mathrm{Zr}$, and $^{111}\mathrm{Mo}$, along with $\ensuremath{\beta}$-delayed neutron emission probabilities of $^{104}\mathrm{Y}$, $^{109,110}\mathrm{Mo}$ and upper limits for $^{105}\mathrm{Y}$, $^{103\ensuremath{-}107}\mathrm{Zr}$, and $^{108,111}\mathrm{Mo}$ have been measured for the first time. Studies on the basis of the quasi-random-phase approximation are used to analyze the ground-state deformation of these…

research product

β-Decay Studies Close to the N=82 r-process Path

New half-lives for neutron-rich ruthenium, rhodium and palladium isotopes close to the r-process path along the N=82 closed shell have been measured at the National Superconducting Cyclotron Laboratory at Michigan State University. The studied isotopes are close to the critical A=118-126 mass region in the astrophysical r-process, where incorrect nuclear structure development towards the shell closure may have the most pronounced effect on the abundances of elements produced. Neutron-rich nuclei were produced by fragmentation of a 120-MeV per nucleon 136 Xe beam on Be and were separated by the A1900 fragment separator. The nuclei of interest were implanted into a double-sided Si strip detec…

research product

Shape-changing particle decays ofBi185and structure of the lightest odd-mass Bi isotopes

Proton and alpha decay of the proton-rich nuclide Bi-185 has been restudied in more detail in the complete fusion reaction Nb-93(Mo-95, 3n)Bi-185 at the velocity filter SHIP. The observed decay pat ...

research product

β decay of In133 : γ emission from neutron-unbound states in Sn133

Excited states in Sn-133 were investigated through the beta decay of In-133 at the ISOLDE facility. The ISOLDE Resonance Ionization Laser Ion Source (RILIS) provided isomer-selective ionization for In-133, allowing us to study separately, and in detail, the beta-decay branch of In-133 J(pi)= (9/2(+)) ground state and its J(pi) = (1/2(-)) isomer.Thanks to the large spin difference of the two beta-decaying states of In-133, it is possible to investigate separately the lower and higher spin states in the daughter, Sn-133, and thus to probe independently different single-particle and single-hole levels. We report here new gamma transitions observed in the decay of In-133, including those assign…

research product

Effect of a Triaxial Nuclear Shape on Proton Tunneling: The Decay and Structure of 145Tm

Gamma rays deexciting states in the proton emitter 145Tm were observed using the recoil-decay tagging method. The 145Tm ground-state rotational band was found to exhibit the properties expected for an h{11/2} proton decoupled band. In addition, coincidences between protons feeding the 2{+} state in 144Er and the 2{+}-->0{+} gamma-ray transition were detected, the first measurement of this kind, leading to a more precise value for the 2{+} excitation energy of 329(1) keV. Calculations with the particle-rotor model and the core quasiparticle coupling model indicate that the properties of the pi{11/2} band and the proton-decay rates in 145Tm are consistent with the presence of triaxiality with…

research product

Nuclear structure studies for the astrophysical r-process

Abstract The production of the heaviest elements in nature occurs via the r-process, i.e. a combination of rapid neutron captures, the inverse photodisintegrations, and slower β − -decays, β -delayed processes as well as fission and possibly interactions with intense neutrino fluxes. A correct understanding and modeling requires the knowledge of nuclear properties far from stability and a detailed prescription of the astrophysical environment. Experiments at radioactive ion beam facilities have played a pioneering role in exploring the characteristics of nuclear structure in terms of masses and β -decay properties. Initial examinations paid attention to highly unstable nuclei with magic neu…

research product

β-decay studies of135–137Snusing selective resonance laser ionization techniques

The decays of the very neutron rich Sn isotopes Sn135-137 were studied at CERN/ISOLDE using isotopic and isobaric selectivity achieved by the use of a resonance ionization laser ion source and mass spectroscopy, respectively. Neutron decay rates, gamma-ray singles, and gamma-gamma coincidence data were collected as a function of time. The half-life (T-1/2) and delayed neutron emission probability (P-n) values of 135 Sn were measured to be 530(20) ms and 21(3)%, respectively. For Sn-136, a T-1/2 of 250(30) ms was determined along with a P-n value of 30(5)%. For Sn-137, a T-1/2 of 190(60) ms and a P-n value of 58(15)% were deduced. Identification of low-energy transitions in Sb-135 was made p…

research product

Half-Life of the Doubly Magicr-Process NucleusN78i

Nuclei with magic numbers serve as important benchmarks in nuclear theory. In addition, neutron-rich nuclei play an important role in the astrophysical rapid neutron-capture process (r process). 78Ni is the only doubly magic nucleus that is also an important waiting point in the r process, and serves as a major bottleneck in the synthesis of heavier elements. The half-life of 78Ni has been experimentally deduced for the first time at the Coupled Cyclotron Facility of the National Superconducting Cyclotron Laboratory at Michigan State University, and was found to be 110(+100)(-60) ms. In the same experiment, a first half-life was deduced for 77Ni of 128(+27)(-33) ms, and more precise half-li…

research product