0000000000542944

AUTHOR

Alex M. Lai

Soleus aponeurosis strain distribution following chronic unloading in humans: an in vivo MR phase-contrast study.

The in vivo strain properties of human skeletal muscle-tendon complexes are poorly understood, particularly following chronic periods of reduced load bearing. We studied eight healthy volunteers who underwent 4 wk of unilateral lower limb suspension (ULLS) to induce chronic unloading. Before and after the ULLS, maximum isometric ankle plantar flexion torque was determined by using a magnetic resonance (MR)-compatible dynamometry. Volumes of the triceps surae muscles and strain distribution of the soleus aponeurosis and the Achilles tendon at a constant submaximal plantar flexion (20% pre-maximal voluntary contraction) were measured by using MRI and velocity-encoded, phase-contrast MRI techn…

research product

Influence of structure on the tissue dynamics of the human soleus muscle observed in MRI studies during isometric contractions.

This article investigates how the internal structure of muscle and its relationship with tendon and even skeletal structures influence the translation of muscle fiber contractions into movement of a limb. Reconstructions of the anatomy of the human soleus muscle from the Visible Human Dataset (available from the National Library of Medicine), magnetic resonance images (MRI), and cadaver studies revealed a complex 3D connective tissue structure populated with pennate muscle fibers. The posterior aponeurosis and the median septum of the soleus form the insertion of the muscle and are continuous with the Achilles tendon. The distal extremities of the pennate muscle fibers attach to these struc…

research product

Muscle kinematics during isometric contraction: Development of phase contrast and spin tag techniques to study healthy and atrophied muscles

Purpose To develop and compare phase-contrast (PC) and spin-tag (ST) MR imaging techniques for accurate quantification of velocity and displacement distribution in the muscle tendon complex of the lower leg during isometric contractions under in vivo conditions, in healthy subjects and subjects with atrophy. Materials and Methods Techniques were developed to acquire PC and ST dynamic images, gated to the force exerted by a subject during isometric contraction. Algorithms were optimized for correction of phase shading errors. Flow velocity quantification was validated in phantoms and ex vivo rabbit muscles. Trajectories of pixels calculated from PC images were compared with those in ST image…

research product