0000000000543242

AUTHOR

Elisa Maria Alessi

0000-0001-6693-0014

showing 2 related works from this author

On the co-orbital asteroids in the solar system: medium-term timescale analysis of the quasi-coplanar objects

2023

The focus of this work is the current distribution of asteroids in co-orbital motion with Venus, Earth and Jupiter, under a quasi-coplanar configuration and for a medium-term timescale of the order of 900 years. A co-orbital trajectory is a heliocentric orbit trapped in a 1:1 mean-motion resonance with a given planet. As such, to model it this work considers the Restricted Three-Body Problem in the planar circular case with the help of averaging techniques. The domain of each co-orbital regime, that is, the quasi-satellite motion, the horseshoe motion and the tadpole motion, can be neatly defined by means of an integrable model and a simple two-dimensional map, that is invariant with respec…

Earth and Planetary Astrophysics (astro-ph.EP)FOS: Physical sciencesAstronomy and AstrophysicsMathematical Physics (math-ph)AsteroidsDynamicsOrbitalSpace and Planetary ScienceResonancesTrojan asteroidsCelestial mechanicsSettore MAT/07 - Fisica MatematicaMathematical PhysicsAstrophysics - Earth and Planetary Astrophysics
researchProduct

The BepiColombo MORE gravimetry and rotation experiments with the ORBIT14 software

2016

The BepiColombo mission to Mercury is an ESA/JAXA cornerstone mission, consisting of two spacecraft in orbit around Mercury addressing several scientific issues. One spacecraft is the Mercury Planetary Orbiter, with full instrumentation to perform radio science experiments. Very precise radio tracking from Earth, on-board accelerometer and optical measurements will provide large data sets. From these it will be possible to study the global gravity field of Mercury and its tidal variations, its rotation state and the orbit of its centre of mass. With the gravity field and rotation state, it is possible to constrain the internal structure of the planet. With the orbit of Mercury, it is possib…

010504 meteorology & atmospheric sciencesAccelerometer01 natural scienceslaw.inventionmethods: numericalGravitationOrbiterMethods: numerical; Planets and satellites: individual: Mercury; Space vehicles: instruments; Astronomy and Astrophysics; Space and Planetary ScienceGravitational fieldmethods: numerical – space vehicles: instruments – planets and satellites: individual: Mercurylaw0103 physical sciencesGravimetryAerospace engineeringspace vehicles: instrumentsSettore MAT/07 - Fisica Matematica010303 astronomy & astrophysics0105 earth and related environmental sciencesRemote sensingRadio SciencePhysicsSpacecraftbusiness.industryAstronomy and AstrophysicsSpace and Planetary SciencePhysics::Space PhysicsLove numberAstrophysics::Earth and Planetary Astrophysicsbusinessplanets and satellites: individual: Mercury
researchProduct