0000000000543978

AUTHOR

Jochen Weller

0000-0002-8282-2010

Euclid preparation: XI. Mean redshift determination from galaxy redshift probabilities for cosmic shear tomography

Ilbert, O., et al. (Euclid Collaboration)

research product

CODEX Weak Lensing Mass Catalogue and implications on the mass-richness relation

The COnstrain Dark Energy with X-ray clusters (CODEX) sample contains the largest flux limited sample of X-ray clusters at $0.35 = \alpha \mu + \beta$, with $\mu = \ln (M_{200c}/M_{\mathrm{piv}})$, and $M_{\mathrm{piv}} = 10^{14.81} M_{\odot}$. We find a slope $\alpha = 0.49^{+0.20}_{-0.15}$, normalization $ \exp(\beta) = 84.0^{+9.2}_{-14.8}$ and $\sigma_{\ln \lambda | \mu} = 0.17^{+0.13}_{-0.09}$ using CFHT richness estimates. In comparison to other weak lensing richness-mass relations, we find the normalization of the richness statistically agreeing with the normalization of other scaling relations from a broad redshift range ($0.0<z<0.65$) and with different cluster selection (X-ray, Sun…

research product

Constraining inverse-curvature gravity with supernovae

We show that the current accelerated expansion of the Universe can be explained without resorting to dark energy. Models of generalized modified gravity, with inverse powers of the curvature can have late time accelerating attractors without conflicting with solar system experiments. We have solved the Friedman equations for the full dynamical range of the evolution of the Universe. This allows us to perform a detailed analysis of Supernovae data in the context of such models that results in an excellent fit. Hence, inverse curvature gravity models represent an example of phenomenologically viable models in which the current acceleration of the Universe is driven by curvature instead of dar…

research product