0000000000543978

AUTHOR

Jochen Weller

0000-0002-8282-2010

showing 3 related works from this author

Euclid preparation: XI. Mean redshift determination from galaxy redshift probabilities for cosmic shear tomography

2021

Ilbert, O., et al. (Euclid Collaboration)

statistical [Methods]IMPACTUNIVERSEAstrophysics01 natural sciencesDark energyGalaxies: distances and redshiftdark energyPHOTOMETRIC REDSHIFTS010303 astronomy & astrophysicsWeak gravitational lensingPhotometric redshiftmedia_commonPhysicsdistances and redshift [Galaxies]Dark energy; Galaxies: distances and redshifts; Methods: statisticalSIMULATIONastro-ph.CO3103 Astronomy and AstrophysicsProbability distributionSpectral energy distributiongalaxies: distances and redshiftsAstrophysics - Cosmology and Nongalactic AstrophysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)530 Physicsastro-ph.GAmedia_common.quotation_subjectFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics1912 Space and Planetary Science0103 physical sciencesdistances and redshifts [Galaxies]/dk/atira/pure/subjectarea/asjc/1900/1912DISTRIBUTIONSmethods: statistical010308 nuclear & particles physicsAstronomy and AstrophysicsPERFORMANCE115 Astronomy Space scienceAstrophysics - Astrophysics of GalaxiesEVOLUTIONGalaxyUniverseRedshiftSTELLARRESOLUTIONSpace and Planetary Science10231 Institute for Computational ScienceAstrophysics of Galaxies (astro-ph.GA)Dark energy/dk/atira/pure/subjectarea/asjc/3100/3103[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

CODEX Weak Lensing Mass Catalogue and implications on the mass-richness relation

2021

The COnstrain Dark Energy with X-ray clusters (CODEX) sample contains the largest flux limited sample of X-ray clusters at $0.35 = \alpha \mu + \beta$, with $\mu = \ln (M_{200c}/M_{\mathrm{piv}})$, and $M_{\mathrm{piv}} = 10^{14.81} M_{\odot}$. We find a slope $\alpha = 0.49^{+0.20}_{-0.15}$, normalization $ \exp(\beta) = 84.0^{+9.2}_{-14.8}$ and $\sigma_{\ln \lambda | \mu} = 0.17^{+0.13}_{-0.09}$ using CFHT richness estimates. In comparison to other weak lensing richness-mass relations, we find the normalization of the richness statistically agreeing with the normalization of other scaling relations from a broad redshift range ($0.0<z<0.65$) and with different cluster selection (X-ray, Sun…

COSMOLOGICAL CONSTRAINTSCosmology and Nongalactic Astrophysics (astro-ph.CO)FOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsLambdaPROFILE01 natural sciences114 Physical sciencesgravitational lensing: weakMAXBCGweak [gravitational lensing]0103 physical sciencesLARGE-SCALE STRUCTUREclusters: general [galaxies]PROBE010303 astronomy & astrophysicsWeak gravitational lensingGalaxy clusterLOCUSSPhysicsTEMPERATURE RELATION010308 nuclear & particles physicsAstronomy and Astrophysicsobservations [cosmology]RedshiftREDUCTIONSpace and Planetary Sciencegravitational lensing: weak; galaxies: clusters: general; cosmology: observationsgalaxies: clusters: generalcosmology: observationsGIANTSGALAXY CLUSTERS[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Constraining inverse-curvature gravity with supernovae

2005

We show that the current accelerated expansion of the Universe can be explained without resorting to dark energy. Models of generalized modified gravity, with inverse powers of the curvature can have late time accelerating attractors without conflicting with solar system experiments. We have solved the Friedman equations for the full dynamical range of the evolution of the Universe. This allows us to perform a detailed analysis of Supernovae data in the context of such models that results in an excellent fit. Hence, inverse curvature gravity models represent an example of phenomenologically viable models in which the current acceleration of the Universe is driven by curvature instead of dar…

High Energy Physics - TheoryPhysicsPhantom energyAstrophysics (astro-ph)FOS: Physical sciencesGeneral Physics and AstronomyBig RipGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsGeneral Relativity and Quantum CosmologyParticle horizonMetric expansion of spaceTheoretical physicsHigh Energy Physics - Theory (hep-th)De Sitter universeZero-energy universeFlatness problemScale factor (cosmology)
researchProduct