0000000000544257

AUTHOR

Peter Schwerdtfeger

Nuclear anapole moment interaction in BaF from relativistic coupled-cluster theory

We present high accuracy relativistic coupled cluster calculations of the P-odd interaction coefficient $W_A$ describing the nuclear anapole moment effect on the molecular electronic structure. The molecule under study, BaF, is considered a promising candidate for the measurement of the nuclear anapole moment, and the preparation for the experiment is now underway [Altunas et al., Phys. Rev. Lett. 120, 142501 (2018)]. Influence of various computational parameters (size of the basis set, treatment of relativistic effects, and treatment of electron correlation) on the calculated $W_A$ coefficient is investigated and a recommended value of 147.7 Hz with an estimated uncertainty of 1.5% is prop…

research product

Kinetic and thermodynamic stability of the group 13 trihydrides.

The kinetic and thermodynamic stabilities of the group 13 hydrides EH(3) (E = B, Al, Ga, In, Tl, E113) are investigated by relativistic density functional and wave function based theories. The unimolecular decomposition of EH(3) --EH + H(2) becomes energetically more favorable going down the Group 13 elements, with the H(2)-abstraction of InH(3), TlH(3), and (E113)H(3) (E113: element with nuclear charge 113) being exothermic. In accordance with the Hammond-Leffler postulate, the activation barrier for the dissociation process decreases accordingly going down the group 13 elements in the periodic table shifting to an early transition state, with activation energies ranging from 88.4 kcal/mol…

research product