0000000000546068

AUTHOR

Jordi Freixenet

showing 14 related works from this author

A probabilistic framework for automatic prostate segmentation with a statistical model of shape and appearance

2011

International audience; Prostate volume estimation from segmented prostate contours in Trans Rectal Ultrasound (TRUS) images aids in diagnosis and treatment of prostate diseases, including prostate cancer. However, accurate, computationally efficient and automatic segmentation of the prostate in TRUS images is a challenging task owing to low Signal-To-Noise-Ratio (SNR), speckle noise, micro-calcifications and heterogeneous intensity distribution inside the prostate region. In this paper, we propose a probabilistic framework for propagation of a parametric model derived from Principal Component Analysis (PCA) of prior shape and posterior probability values to achieve the prostate segmentatio…

Posterior probability030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicineExpectation–maximization algorithm[ INFO.INFO-TI ] Computer Science [cs]/Image ProcessingActive Appearance Model.Computer visionMathematicsbusiness.industryBayes ClassificationProbabilistic logicStatistical modelSpeckle noisePattern recognitionImage segmentationProstate SegmentationExpectationMaximizationActive appearance modelActive Appearance Model[INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV][INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]Parametric modelArtificial intelligencebusiness030217 neurology & neurosurgery
researchProduct

A supervised learning framework of statistical shape and probability priors for automatic prostate segmentation in ultrasound images

2013

Prostate segmentation aids in prostate volume estimation, multi-modal image registration, and to create patient specific anatomical models for surgical planning and image guided biopsies. However, manual segmentation is time consuming and suffers from inter-and intra-observer variabilities. Low contrast images of trans rectal ultrasound and presence of imaging artifacts like speckle, micro-calcifications, and shadow regions hinder computer aided automatic or semi-automatic prostate segmentation. In this paper, we propose a prostate segmentation approach based on building multiple mean parametric models derived from principal component analysis of shape and posterior probabilities in a multi…

MaleComputer sciencePosterior probabilityScale-space segmentationImage registrationHealth InformaticsSensitivity and SpecificityPattern Recognition AutomatedArtificial IntelligenceImage Interpretation Computer-AssistedHumansRadiology Nuclear Medicine and imagingComputer visionSegmentationUltrasonographyRadiological and Ultrasound TechnologySegmentation-based object categorizationbusiness.industryProstateProstatic NeoplasmsReproducibility of ResultsPattern recognitionImage segmentationImage EnhancementComputer Graphics and Computer-Aided DesignSpectral clusteringActive appearance modelData Interpretation StatisticalComputer Vision and Pattern RecognitionArtificial intelligencebusinessAlgorithmsMedical Image Analysis
researchProduct

A Survey of Prostate Segmentation Methodologies in Ultrasound, Magnetic Resonance and Computed Tomography Images

2012

Prostate segmentation is a challenging task, and the challenges significantly differ from one imaging modality to another. Low contrast, speckle, micro-calcifications and imaging artifacts like shadow poses serious challenges to accurate prostate segmentation in transrectal ultrasound (TRUS) images. However in magnetic resonance (MR) images, superior soft tissue contrast highlights large variability in shape, size and texture information inside the prostate. In contrast poor soft tissue contrast between prostate and surrounding tissues in computed tomography (CT) images pose a challenge in accurate prostate segmentation. This article reviews the methods developed for prostate gland segmenta…

Malemedicine.medical_specialty[INFO.INFO-IM] Computer Science [cs]/Medical ImagingHealth Informatics02 engineering and technology030218 nuclear medicine & medical imagingProstate -- Cancer-- DiagnosisPròstata -- Càncer -- Diagnòstic03 medical and health sciencesProstate cancerSpeckle pattern0302 clinical medicineProstateProstate -- Cancer -- Imaging0202 electrical engineering electronic engineering information engineering[INFO.INFO-IM]Computer Science [cs]/Medical ImagingMedicineHumansComputer visionSegmentationPròstata -- Càncer -- ImatgesUltrasonographyModalitiesModality (human–computer interaction)medicine.diagnostic_test[ INFO.INFO-IM ] Computer Science [cs]/Medical Imagingbusiness.industryUltrasoundProstateMagnetic resonance imagingmedicine.diseaseMagnetic Resonance Imaging3. Good healthComputer Science Applicationsmedicine.anatomical_structureImatgeria mèdica020201 artificial intelligence & image processingArtificial intelligenceRadiologybusinessTomography X-Ray ComputedSoftwareAlgorithmsImaging systems in medicine
researchProduct

Computer-Aided Detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: A review

2015

Prostate cancer is the second most diagnosed cancer of men all over the world. In the last few decades, new imaging techniques based on Magnetic Resonance Imaging (MRI) have been developed to improve diagnosis. In practise, diagnosis can be affected by multiple factors such as observer variability and visibility and complexity of the lesions. In this regard, computer-aided detection and computer-aided diagnosis systems have been designed to help radiologists in their clinical practice. Research on computer-aided systems specifically focused for prostate cancer is a young technology and has been part of a dynamic field of research for the last 10years. This survey aims to provide a comprehen…

Malemedicine.medical_specialtyTime FactorsHealth InformaticsCAD[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processingProstate cancerImage Processing Computer-AssistedMedicineHumansMass ScreeningMedical physicsDiagnosis Computer-AssistedObserver VariationMulti parametricmedicine.diagnostic_testbusiness.industryCarcinomaProstatic NeoplasmsReproducibility of ResultsMagnetic resonance imagingmedicine.diseaseMagnetic Resonance ImagingComputer aided detection3. Good healthComputer Science ApplicationsClinical PracticeMultiple factorsComputer-aided diagnosisResearch DesignNeural Networks ComputerNeoplasm Gradingbusiness[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingMedical InformaticsSoftware
researchProduct

Multiple Mean Models of Statistical Shape and Probability Priors for Automatic Prostate Segmentation

2011

International audience; Low contrast of the prostate gland, heterogeneous intensity distribution inside the prostate region, imaging artifacts like shadow regions, speckle and significant variations in prostate shape, size and in- ter dataset contrast in Trans Rectal Ultrasound (TRUS) images challenge computer aided automatic or semi-automatic segmentation of the prostate. In this paper, we propose a probabilistic framework for automatic initialization and propagation of multiple mean parametric models derived from principal component analysis of shape and posterior probability information of the prostate region to segment the prostate. Unlike traditional statistical models of shape and int…

[ INFO.INFO-IM ] Computer Science [cs]/Medical Imagingbusiness.industryPosterior probability[INFO.INFO-IM] Computer Science [cs]/Medical ImagingProbabilistic logicInitializationStatistical modelPattern recognition02 engineering and technology030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicinePrior probabilityParametric modelPrincipal component analysis[INFO.INFO-IM]Computer Science [cs]/Medical Imaging0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingSegmentationArtificial intelligencebusinessMathematics
researchProduct

Spectral clustering of shape and probability prior models for automatic prostate segmentation.

2013

Imaging artifacts in Transrectal Ultrasound (TRUS) images and inter-patient variations in prostate shape and size challenge computer-aided automatic or semi-automatic segmentation of the prostate. In this paper, we propose to use multiple mean parametric models derived from principal component analysis (PCA) of shape and posterior probability information to segment the prostate. In contrast to traditional statistical models of shape and intensity priors, we use posterior probability of the prostate region determined from random forest classification to build, initialize and propagate our model. Multiple mean models derived from spectral clustering of combined shape and appearance parameters…

MaleModels StatisticalComputer scienceSegmentation-based object categorizationbusiness.industryPosterior probabilityProstateScale-space segmentationReproducibility of ResultsPattern recognitionImage segmentationModels BiologicalSensitivity and SpecificitySpectral clusteringPattern Recognition AutomatedPoint distribution modelSubtraction TechniqueImage Interpretation Computer-AssistedHumansComputer visionSegmentationComputer SimulationArtificial intelligencebusinessUltrasonographyAnnual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
researchProduct

Texture Guided Active Appearance Model Propagation for Prostate Segmentation

2010

Fusion of Magnetic Resonance Imaging (MRI) and Trans Rectal Ultra Sound (TRUS) images during TRUS guided prostate biopsy improves localization of the malignant tissues. Segmented prostate in TRUS and MRI improve registration accuracy and reduce computational cost of the procedure. However, accurate segmentation of the prostate in TRUS images can be a challenging task due to low signal to noise ratio, heterogeneous intensity distribution inside the prostate, and imaging artifacts like speckle noise and shadow. We propose to use texture features from approximation coefficients of Haar wavelet transform for propagation of a shape and appearance based statistical model to segment the prostate i…

Prostate biopsymedicine.diagnostic_testbusiness.industryComputer scienceSpeckle noiseMagnetic resonance imagingPattern recognitionHaar waveletActive appearance modelShadowmedicineSegmentationComputer visionArtificial intelligencebusiness
researchProduct

A Supervised Learning Framework for Automatic Prostate Segmentation in Trans Rectal Ultrasound Images

2012

International audience; Heterogeneous intensity distribution inside the prostate gland, significant variations in prostate shape, size, inter dataset contrast variations, and imaging artifacts like shadow regions and speckle in Trans Rectal Ultrasound (TRUS) images challenge computer aided automatic or semi-automatic segmentation of the prostate. In this paper, we propose a supervised learning schema based on random forest for automatic initialization and propagation of statistical shape and appearance model. Parametric representation of the statistical model of shape and appearance is derived from principal component analysis (PCA) of the probability distribution inside the prostate and PC…

[ INFO.INFO-IM ] Computer Science [cs]/Medical Imagingbusiness.industryComputer sciencePosterior probabilitySupervised learning[INFO.INFO-IM] Computer Science [cs]/Medical ImagingStatistical modelPattern recognition02 engineering and technology030218 nuclear medicine & medical imagingRandom forestActive appearance model03 medical and health sciences0302 clinical medicinePoint distribution model0202 electrical engineering electronic engineering information engineering[INFO.INFO-IM]Computer Science [cs]/Medical Imaging020201 artificial intelligence & image processingComputer visionSegmentationArtificial intelligencebusinessParametric statistics
researchProduct

A Coupled Schema of Probabilistic Atlas and Statistical Shape and Appearance Model for 3D Prostate Segmentation in MR Images

2012

International audience; A hybrid framework of probabilistic atlas and statistical shape and appearance model (SSAM) is proposed to achieve 3D prostate segmentation. An initial 3D segmentation of the prostate is obtained by registering the probabilistic atlas to the test dataset with deformable Demons registration. The initial results obtained are used to initialize multiple SSAMs corresponding to the apex, central and base regions of the prostate gland to incorporate local variabilities. Multiple mean parametric models of shape and appearance are derived from principal component analysis of prior shape and intensity information of the prostate from the training data. The parameters are then…

Similarity (geometry)[ INFO.INFO-IM ] Computer Science [cs]/Medical ImagingSegmentation-based object categorizationbusiness.industry[INFO.INFO-IM] Computer Science [cs]/Medical ImagingImage registrationScale-space segmentationPattern recognition02 engineering and technologyImage segmentation030218 nuclear medicine & medical imagingActive appearance model03 medical and health sciences0302 clinical medicineHausdorff distance0202 electrical engineering electronic engineering information engineering[INFO.INFO-IM]Computer Science [cs]/Medical Imaging020201 artificial intelligence & image processingSegmentationComputer visionArtificial intelligencebusinessMathematics
researchProduct

A hybrid framework of multiple active appearance models and global registration for 3D prostate segmentation in MRI.

2012

International audience; Real-time fusion of Magnetic Resonance (MR) and Trans Rectal Ultra Sound (TRUS) images aid in the localization of malignant tissues in TRUS guided prostate biopsy. Registration performed on segmented contours of the prostate reduces computational complexity and improves the multimodal registration accuracy. However, accurate and computationally efficient 3D segmentation of the prostate in MR images could be a challenging task due to inter-patient shape and intensity variability of the prostate gland. In this work, we propose to use multiple statistical shape and appearance models to segment the prostate in 2D and a global registration framework to impose shape restri…

Ground truthProstate biopsySimilarity (geometry)medicine.diagnostic_test[ INFO.INFO-IM ] Computer Science [cs]/Medical ImagingComputer sciencebusiness.industry[INFO.INFO-IM] Computer Science [cs]/Medical ImagingMagnetic resonance imaging030230 surgery030218 nuclear medicine & medical imagingActive appearance model03 medical and health sciences0302 clinical medicineHausdorff distancemedicine.anatomical_structureProstateBiopsymedicine[INFO.INFO-IM]Computer Science [cs]/Medical ImagingSegmentationComputer visionAffine transformationArtificial intelligencebusiness
researchProduct

A boosting approach for prostate cancer detection using multi-parametric MRI

2015

International audience; Prostate cancer has been reported as the second most frequently diagnosed men cancers in the world. In the last decades, new imaging techniques based on MRI have been developed in order to improve the diagnosis task of radiologists. In practise, diagnosis can be affected by multiple factors reducing the chance to detect potential lesions. Computer-aided detection and computer-aided diagnosis have been designed to answer to these needs and provide help to radiologists in their daily duties. In this study, we proposed an automatic method to detect prostate cancer from a per voxel manner using 3T multi-parametric Magnetic Resonance Imaging (MRI) and a gradient boosting …

medicine.medical_specialty02 engineering and technology[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processingcomputer.software_genremulti-parametric MRI03 medical and health sciencesProstate cancer0302 clinical medicineVoxelArea under curve0202 electrical engineering electronic engineering information engineeringmedicine[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processingMulti parametricmedicine.diagnostic_testbusiness.industry020207 software engineeringMagnetic resonance imagingmedicine.diseaseprostate cancer3. Good healthMultiple factorsComputer-aided diagnosis030220 oncology & carcinogenesisGradient boostingcomputer-aided diagnosisGradient boostingRadiologybusinesscomputer[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
researchProduct

Statistical Shape and Probability Prior Model for Automatic Prostate Segmentation

2011

International audience; Accurate prostate segmentation in Trans Rectal Ultra Sound (TRUS) images is an important step in different clinical applications. However, the development of computer aided automatic prostate segmentation in TRUS images is a challenging task due to low contrast, heterogeneous intensity distribution inside the prostate region, imaging artifacts like shadow, and speckle. Significant variations in prostate shape, size and contrast between the datasets pose further challenges to achieve an accurate segmentation. In this paper we propose to use graph cuts in a Bayesian framework for automatic initialization and propagate multiple mean parametric models derived from princi…

Markov random field[ INFO.INFO-IM ] Computer Science [cs]/Medical Imagingbusiness.industryPosterior probability[INFO.INFO-IM] Computer Science [cs]/Medical ImagingInitializationPattern recognitionImage segmentation01 natural sciences030218 nuclear medicine & medical imagingActive appearance model010104 statistics & probability03 medical and health sciences0302 clinical medicineHausdorff distanceCutParametric model[INFO.INFO-IM]Computer Science [cs]/Medical ImagingComputer visionArtificial intelligence0101 mathematicsbusinessMathematics
researchProduct

Normalization of T2W-MRI Prostate Images using Rician a priori

2016

International audience; Prostate cancer is reported to be the second most frequently diagnosed cancer of men in the world. In practise, diagnosis can be affected by multiple factors which reduces the chance to detect the potential lesions. In the last decades, new imaging techniques mainly based on MRI are developed in conjunction with Computer-Aided Diagnosis (CAD) systems to help radiologists for such diagnosis. CAD systems are usually designed as a sequential process consisting of four stages: pre-processing, segmentation, registration and classification. As a pre-processing, image normalization is a critical and important step of the chain in order to design a robust classifier and over…

Normalization (statistics)Computer scienceNormalization (image processing)T2W-MRI02 engineering and technology[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processing030218 nuclear medicine & medical imaging03 medical and health sciencesProstate cancer0302 clinical medicineProstateRician fading0202 electrical engineering electronic engineering information engineeringmedicineComputer visionSegmentation[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processingpre-processingProstate cancermedicine.diagnostic_testbusiness.industryCancerMagnetic resonance imagingImage segmentationmedicine.diseasemedicine.anatomical_structurenormalizationComputer-aided diagnosisA priori and a posteriori020201 artificial intelligence & image processingcomputer-aided diagnosisArtificial intelligencebusiness[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
researchProduct

Spectral Clustering of Shape and Probability Prior Models for Automatic Prostate Segmentation in Ultrasound Images

2012

International audience; Imaging artifacts in Transrectal Ultrasound (TRUS) images and inter-patient variations in prostate shape and size challenge computer-aided automatic or semi-automatic segmentation of the prostate. In this paper, we propose to use multiple mean parametric models derived from principal component analysis (PCA) of shape and posterior probability information to segment the prostate. In contrast to traditional statistical models of shape and intensity priors, we use posterior probability of the prostate region determined from random forest classification to build, initialize and propagate our model. Multiple mean models derived from spectral clustering of combined shape a…

[ INFO.INFO-IM ] Computer Science [cs]/Medical Imaging[INFO.INFO-IM] Computer Science [cs]/Medical Imaging[INFO.INFO-IM]Computer Science [cs]/Medical Imaging
researchProduct