Exploring the non-covalent ligand-binding mechanism on immunoproteasome by enhanced Molecular Dynamics
Selective inhibition of immunoproteasome is a valuable strategy to treat autoimmune and inflammatory diseases, and hematologic malignancies. In particular, non-covalent inhibition is strongly desirable because it is free of the drawbacks and side effects associated with covalent inhibition. Recently, a new series of amide derivatives with Ki values in the low/submicromolar ranges toward the β1i subunit have been identified as non-covalent inhibitors 1 . We investigated the binding mechanism of the most potent and selective inhibitor (1) to elucidate the steps from the ligand entrance into the binding pocket to the ligand-induced conformational changes. We carried out a total of 400ns of MD-…