0000000000547048
AUTHOR
C. Y. Tu
Combined Raman scattering andab initioinvestigation of pressure-induced structural phase transitions in the scintillatorZnWO4
The room-temperature Raman scattering was measured in ${\text{ZnWO}}_{4}$ up to 45 GPa. We report the pressure dependence of all the Raman-active phonons of the low-pressure wolframite phase. As pressure increases additional Raman peaks appear at 30.6 GPa due to the onset of a reversible structural phase transition to a distorted monoclinic $\ensuremath{\beta}$-fergusonite-type phase. The low-pressure and high-pressure phases coexist from 30.6 to 36.5 GPa. In addition to the Raman measurements we also report ab initio total-energy and lattice-dynamics calculations for the two phases. These calculations helped us to determine the crystalline structure of the high-pressure phase and to assign…
High-pressure structural phase transitions in CuWO4
We study the effects of pressure on the structural, vibrational, and magnetic behavior of cuproscheelite. We performed powder x-ray diffraction and Raman spectroscopy experiments up to 27 GPa as well as ab initio total-energy and lattice-dynamics calculations. Experiments provide evidence that a structural phase transition takes place at 10 GPa from the low-pressure triclinic phase (P-1) to a monoclinic wolframite-type structure (P2/c). Calculations confirmed this finding and indicate that the phase transformation involves a change in the magnetic order. In addition, the equation of state for the triclinic phase is determined: V0 = 132.8(2) A3, B0 = 139 (6) GPa and = 4. Furthermore, experim…
Growth, characterization, and high-pressure optical studies of CuWO4
Copper tungstate (CuWO4) crystals grown by the top-seeded solution growth method were characterized by X-ray diffraction, Raman scattering, and optical measurements. CuWO4 has a triclinic structure (P 1¯) with a = 4.709 A, b = 5.845 A, c = 4.884 A, α = 88.3°, β = 92.5°, and γ = 97.2°. It consists of corner-linked CuO6 and WO6 octahedra, the former having a pseudo-tetragonally elongated geometry caused by the Cu2+ Jahn–Teller effect. Fifteen out of the eighteen Raman modes of CuWO4 are reported, discussed, and compared with those of other tungstates. We also determined the indirect band-gap energy of CuWO4 (2.3 eV) and its negative pressure coefficient up to 25 GPa. The pressure evolution of…
Pressure effects on the electronic and optical properties ofAWO4wolframites (A =Cd, Mg, Mn, and Zn): The distinctive behavior of multiferroic MnWO4
The electronic band-structure and band-gap dependence on the $d$ character of ${A}^{2+}$ cation in $A$WO${}_{4}$ wolframite-type oxides is investigated for different compounds ($A$ $=$ Mg, Zn, Cd, and Mn) by means of optical-absorption spectroscopy and first-principles density-functional calculations. High pressure is used to tune their properties up to 10 GPa by changing the bonding distances establishing electronic to structural correlations. The effect of unfilled $d$ levels is found to produce changes in the nature of the band gap as well as its pressure dependence without structural changes. Thus, whereas Mg, Zn, and Cd, with empty or filled $d$ electron shells, give rise to direct and…
Structure Solution of the High-Pressure Phase of CuWO4 and Evolution of the Jahn–Teller Distortion
In this work, we have investigated the structural behavior of cuproscheelite up to 33.9 GPa by means of high-pressure single-crystal X-ray diffraction (SXRD) and extended X-ray absorption fine structure (EXAFS). According to EXAFS, beyond 9 GPa a phase transition takes place. On the basis of SXRD, the transition is from the triclinic (P1) structure to a monoclinic (P2/c) structure isotypic to wolframite. The transition implies abrupt changes of CuO6 and WO6 octahedra, but no coordination change. Further, we report the role played by the Jahn–Teller distortion of the CuO6 octahedra on the mechanism of the phase transition as well as the changes in the behavior of the Cu–O bonds for the tricl…