0000000000547709

AUTHOR

Ulf Leser

Set similarity joins on mapreduce

Set similarity joins, which compute pairs of similar sets, constitute an important operator primitive in a variety of applications, including applications that must process large amounts of data. To handle these data volumes, several distributed set similarity join algorithms have been proposed. Unfortunately, little is known about the relative performance, strengths and weaknesses of these techniques. Previous comparisons are limited to a small subset of relevant algorithms, and the large differences in the various test setups make it hard to draw overall conclusions. In this paper we survey ten recent, distributed set similarity join algorithms, all based on the MapReduce paradigm. We emp…

research product

Finding k -dissimilar paths with minimum collective length

Shortest path computation is a fundamental problem in road networks. However, in many real-world scenarios, determining solely the shortest path is not enough. In this paper, we study the problem of finding k-Dissimilar Paths with Minimum Collective Length (kDPwML), which aims at computing a set of paths from a source s to a target t such that all paths are pairwise dissimilar by at least \theta and the sum of the path lengths is minimal. We introduce an exact algorithm for the kDPwML problem, which iterates over all possible s-t paths while employing two pruning techniques to reduce the prohibitively expensive computational cost. To achieve scalability, we also define the much smaller set …

research product