Ab initio calculations of the electronic structure for Mn2+-doped YAlO3 crystals
The electronic structure of Mn2+ ion substituted for the host Y atom in orthorhombic bulk YAlO3 crystals has been calculated by means of hybrid exchange-correlation functional HSE within density functional theory. The supercell approach has been used to simulate in Pbnm YAlO3 crystal the point defects, Mn-dopant and compensated the F+ center (oxygen vacancy with one trapped electron), to make unit cell neutral. Large 2 × 2 × 2 supercells of 160 atoms allow us to simulate substitutional point defect with concentration of about 3%. Mn2+ ions substituting for host Y form covalent Mn–O bonds, in opposite to the mostly ionic Y–O bond. The F center inserted to compensate the Mn2+ dopant in YAlO3 …