0000000000548002

AUTHOR

Damien J. Batstone

0000-0002-4294-3942

showing 2 related works from this author

A review on anaerobic membrane bioreactors (AnMBRs) focused on modelling and control aspects

2018

[EN] The use of anaerobic membrane bioreactor technology (AnMBR) is rapidly expanding. However, depending on the application, AnMBR design and operation is not fully mature, and needs further research to optimize process efficiency and enhance applicability. This paper reviews state-of-the-art of AnMBR focusing on modelling and control aspects. Quantitative environmental and economic evaluation has demonstrated substantial advantages in application of AnMBR to domestic wastewater treatment, but detailed modelling is less mature. While anaerobic process modelling is generally mature, more work is needed on integrated models which include coupling between membrane performance (including fouli…

Environmental EngineeringAnaerobic respirationControl aspectsProcess (engineering)0208 environmental biotechnologyAnaerobic Membrane Bioreactor (AnMBR)HydraulicsBioengineering02 engineering and technology010501 environmental sciencesWastewater01 natural sciencesModellingWater PurificationBioreactors[CHIM.GENI]Chemical Sciences/Chemical engineeringControlBioreactor[CHIM]Chemical SciencesAnaerobiosisWaste Management and DisposalTECNOLOGIA DEL MEDIO AMBIENTEComputingMilieux_MISCELLANEOUS0105 earth and related environmental sciencesFoulingRenewable Energy Sustainability and the EnvironmentGeneral MedicineFouling6. Clean water020801 environmental engineeringMembraneEnvironmental scienceSewage treatmentBiochemical engineeringAnaerobic exercise
researchProduct

Modelling hydrolysis: Simultaneous versus sequential biodegradation of the hydrolysable fractions

2018

Hydrolysis is considered the limiting step during solid waste anaerobic digestion (including co-digestion of sludge and biosolids). Mechanisms of hydrolysis are mechanistically not well understood with detrimental impact on model predictive capability. The common approach to multiple substrates is to consider simultaneous degradation of the substrates. This may not have the capacity to separate the different kinetics. Sequential degradation of substrates is theoretically supported by microbial capacity and the composite nature of substrates (bioaccessibility concept). However, this has not been experimentally assessed. Sequential chemical fractionation has been successfully used to define i…

[SDV.BIO]Life Sciences [q-bio]/BiotechnologyBiosolidsSEQUENTIAL EXTRACTIONANAEROBIC DIGESTIONBIODEGRADATION02 engineering and technology010501 environmental sciencesTRITICUM AESTIVUM01 natural sciences7. Clean energyNUMERICAL MODELSLUDGE DIGESTIONBioreactorsMETHANEBIOLOGICAL MATERIALSACTIVATED SLUDGE0202 electrical engineering electronic engineering information engineeringAnaerobiosisSequential modelPRIORITY JOURNALWaste Management and DisposalComputingMilieux_MISCELLANEOUSCALIBRATIONSewageCONCENTRATION (PARAMETER)ChemistryFRACTIONATIONACID HYDROLYSISINCUBATION TIMEMODELLINGHYDROLYSISCHEMICAL FRACTIONATIONSEQUENTIAL DEGRADATIONBiodegradation EnvironmentalWASTE TREATMENTORGANIC MATTER[SDE]Environmental SciencesANAEROBIC DIGESTION MODELADM1SOLID WASTE020209 energyMODELSFractionationCAPACITYHydrolysisDIGESTIONISOTOPIC FRACTIONATIONNONHUMANCHEMICAL OXYGEN DEMANDARTICLEMODEL SELECTION0105 earth and related environmental sciencesChromatographyModels TheoreticalSUBSTRATESBiodegradationSIMULTANEOUS DEGRADATIONHOMOGENEOUS MATERIALSAnaerobic digestionWASTE WATER MANAGEMENTActivated sludgeAPPLEDegradation (geology)Waste Management
researchProduct