0000000000548027
AUTHOR
Felix Gregor Eikmeyer
Insights into the annotated genome sequence of Methanoculleus bourgensis MS2(T), related to dominant methanogens in biogas-producing plants
The final step of the biogas production process, the methanogenesis, is frequently dominated by members of the genus Methanoculleus. In particular, the species Methanoculleus bourgensis was identified to play a role in different biogas reactor systems. The genome of the type strain M. bourgensis MS2(T), originally isolated from a sewage sludge digestor, was completely sequenced to analyze putative adaptive genome features conferring competitiveness within biogas reactor environments to the strain. Sequencing and assembly of the M. bourgensis MS2(T) genome yielded a chromosome with a size of 2,789,773 bp. Comparative analysis of M. bourgensis MS2(T) and Methanoculleus marisnigri JR1 revealed…
Complete genome sequence of the hydrogenotrophic, methanogenic archaeon Methanoculleus bourgensis strain MS2(T), Isolated from a sewage sludge digester.
ABSTRACT Methanoculleus bourgensis , of the order Methanomicrobiales , is a dominant methanogenic archaeon in many biogas-producing reactor systems fed with renewable primary products. It is capable of synthesizing methane via the hydrogenotrophic pathway utilizing hydrogen and carbon dioxide or formate as the substrates. Here we report the complete and finished genome sequence of M. bourgensis strain MS2 T , isolated from a sewage sludge digester.
Complete genome sequence of the hydrogenotrophic Archaeon Methanobacterium sp Mb1 isolated from a production-scale biogas plant
Methanobacterium sp. Mb1, a hydrogenotrophic methanogenic Archaeon, was isolated from a rural biogas plant producing methane-rich biogas from maize silage and cattle manure in Germany. Here we report the complete genome sequence of the novel methanogenic isolate Methanobacterium sp. Mb1 harboring a 2,029,766 bp circular chromosome featuring a GC content of 39.74%. The genome encodes two rRNA operons, 41 tRNA genes and 2021 coding sequences and represents the smallest genome currently known within the genus Methanobacterium. (C) 2013 Elsevier B.V. All rights reserved.