Consensus nomenclature for CD8(+) T cell phenotypes in cancer
International audience; Whereas preclinical investigations and clinical studies have established that CD8+ T cells can profoundly affect cancer progression, the underlying mechanisms are still elusive. Challenging the prevalent view that the beneficial effect of CD8+ T cells in cancer is solely attributable to their cytotoxic activity, several reports have indicated that the ability of CD8+ T cells to promote tumor regression is dependent on their cytokine secretion profile and their ability to self-renew. Evidence has also shown that the tumor microenvironment can disarm CD8+ T cell immunity, leading to the emergence of dysfunctional CD8+ T cells. The existence of different types of CD8+ T…
Classification of current anticancer immunotherapies.
© 2014. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Heat Shock Protein Vaccines Against Cancer
Vaccination of mice with heat shock proteins (HSPs) derived from a tumor makes the mice resistant to the tumor from which the HSP was obtained. This phenomenon has been demonstrated with three HSPs--gp96, hsp90, and hsp70. Vaccination with HSPs also elicits antigen-specific cytotoxic T lymphocytes (CTLs). The specific immunogenicity of HSPs derives apparently, not from the HSPs per se, but from the peptides bound to them. These observations provide the basis for a new generation of vaccines against cancer. The HSP-based cancer vaccines circumvent two of the most intractable hurdles to cancer immunotherapy. One of them is the possibility that human cancers, like cancers of experimental anima…