Selective Recognition of Phenazine by 2,6‐Dibutoxylnaphthalene‐Based Tetralactam Macrocycle
A 2,6‐dibutoxylnaphthalene‐based tetralactam macrocycle was designed and synthesized. This macrocycle shows highly selective recognition to phenazine ‐‐ a well‐known secondary metabolite in bacteria and an emerging disinfection byproduct in drinking water. In contrast, the macrocycle shows no binding to the structurally similar dibenzo‐1,4‐dioxin. It was revealed that hydrogen bonding, π‐π and σ‐π interactions are the major driving forces between phenazine and the new tetralactam macrocycle. A perfect complementarity in electrostatic potential surfaces may explain the high selectivity. In addition, the macrocycle shows fluorescent response to phenazine, demonstrating its potential in fluore…