0000000000548641

AUTHOR

Simon Kabus

A new quasi-static multi-degree of freedom tapered roller bearing model to accurately consider non-Hertzian contact pressures in time-domain simulations

The accuracy of the fatigue life calculations in rolling bearing simulations is highly dependent on the precision of the roller-raceway contact simulations and the ability to accurately include structural deflections of the supporting structure. Several different methods exist to simulate the pressure distributions, and in time-domain bearing simulations, where many contacts need evaluation, the simple and time efficient methods are more popular. These methods underestimate the fatigue life reduction due to roller end effects, overload and misalignments. Furthermore, existing time-domain rolling bearing models assume that the bearing rings remain circular, which can be a poor approximation…

research product

A New Quasi-Static Cylindrical Roller Bearing Model to Accurately Consider Non-Hertzian Contact Pressure in Time Domain Simulations

The accuracy of the fatigue life calculations in rolling bearing simulations is highly dependent on the precision of the roller-raceway contact simulations. Several different methods exist to simulate these pressure distributions and in time domain bearing simulations, where many contacts need evaluation, the simple and time efficient methods are more popular, yielding erroneous life estimates. This paper presents a new six degree of freedom frictionless quasi-static time domain cylindrical roller bearing model that uses high precision elastic half-space theory to simulate the contact pressures. The potentially higher computational demand using the advanced contact calculations is addressed…

research product