0000000000548680
AUTHOR
Kari A. Frank
Collisionless shock heating of heavy ions in SN 1987A
Astrophysical shocks at all scales, from those in the heliosphere up to the cosmological shock waves, are typically "collisionless", because the thickness of their jump region is much shorter than the collisional mean free path. Across these jumps, electrons, protons, and ions are expected to be heated at different temperatures. Supernova remnants (SNRs) are ideal targets to study collisionless processes because of their bright post-shock emission and fast shocks. Although optical observations of Balmer-dominated shocks in young SNRs showed that the post-shock proton temperature is higher than the electron temperature, the actual dependence of the post-shock temperature on the particle mass…
Spectral Evolution of the X-Ray Remnant of SN 1987A: A High-Resolution $Chandra$ HETG Study
Based on observations with the $Chandra$ X-ray Observatory, we present the latest spectral evolution of the X-ray remnant of SN 1987A (SNR 1987A). We present a high-resolution spectroscopic analysis using our new deep ($\sim$312 ks) $Chandra$ HETG observation taken in March 2018, as well as archival $Chandra$ gratings spectroscopic data taken in 2004, 2007, and 2011 with similarly deep exposures ($\sim$170 - 350 ks). We perform detailed spectral model fits to quantify changing plasma conditions over the last 14 years. Recent changes in electron temperatures and volume emission measures suggest that the shocks moving through the inner ring have started interacting with less dense circumstell…
The 30 Year Search for the Compact Object in SN 1987A
Despite more than 30 years of searches, the compact object in Supernova (SN) 1987A has not yet been detected. We present new limits on the compact object in SN 1987A using millimeter, near-infrared, optical, ultraviolet, and X-ray observations from ALMA, VLT, HST, and Chandra. The limits are approximately 0.1 mJy ($0.1\times 10^{-26}$ erg s$^{-1}$ cm$^{-2}$ Hz$^{-1}$) at 213 GHz, 1 Lsun ($6\times 10^{-29}$ erg s$^{-1}$ cm$^{-2}$ Hz$^{-1}$) in optical if our line-of-sight is free of ejecta dust, and $10^{36}$ erg s$^{-1}$ ($2\times 10^{-30}$ erg s$^{-1}$ cm$^{-2}$ Hz$^{-1}$) in 2-10 keV X-rays. Our X-ray limits are an order of magnitude less constraining than previous limits because we use a…