6533b852fe1ef96bd12ab6e0

RESEARCH PRODUCT

The 30 Year Search for the Compact Object in SN 1987A

Maarten BaesFrancesco TaddiaJacobus T. Van LoonSeppo MattilaBryan GaenslerAntero AholaRoger A. ChevalierGeorge SonnebornJesper SollermanRobert P. KirshnerJ. M. MarcaideH.-thomas JankaMichael GablerJosefin LarssonKari A. FrankChi-yung NgAnders JerkstrandRemy IndebetouwClaes FranssonS. E. WoosleyHaley Louise GomezLister Staveley-smithPeter LundqvistDennis AlpDavid N. BurrowsBruno LeibundgutPeter ChallisSangwook ParkJ. Craig WheelerJason SpyromilioGiovanna ZanardoPhil CiganAleksandar CikotaPatrice BouchetMikako Matsuura

subject

[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]AstrophysicsPhysical Chemistry01 natural sciences7. Clean energyAtomicLuminosityParticle and Plasma PhysicsQB460Astrophysics::Solar and Stellar AstrophysicsAbsorption (logic)10. No inequality010303 astronomy & astrophysicsQBHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsastro-ph.HEAccretion (meteorology)SUPERNOVA REMNANT 1987ASupernovaAstrophysics - High Energy Astrophysical PhenomenaAstronomical and Space SciencesPhysical Chemistry (incl. Structural)NEUTRON-STARSCIRCUMSTELLAR RINGX-RAYSAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesBLUE SUPERGIANTSAstrophysics::Cosmology and Extragalactic AstrophysicsCompact starAstronomy & Astrophysicsstars: neutronneutron [stars]Pulsarindividual [supernovae]0103 physical sciencesblack holes [stars]NuclearINTEGRAL FIELD SPECTROSCOPY010306 general physicsUNDERGROUND SCINTILLATION TELESCOPEsupernovae: individualAstrophysics::Galaxy AstrophysicsOrganic ChemistryMolecularAstronomy and AstrophysicsHUBBLE-SPACE-TELESCOPEEffective temperatureNeutron starRAY EMISSION-LINESPhysics and Astronomyindividual (SN 1987A) [supernovae]13. Climate actionSpace and Planetary ScienceLARGE-MAGELLANIC-CLOUD[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]stars: black holes

description

Despite more than 30 years of searches, the compact object in Supernova (SN) 1987A has not yet been detected. We present new limits on the compact object in SN 1987A using millimeter, near-infrared, optical, ultraviolet, and X-ray observations from ALMA, VLT, HST, and Chandra. The limits are approximately 0.1 mJy ($0.1\times 10^{-26}$ erg s$^{-1}$ cm$^{-2}$ Hz$^{-1}$) at 213 GHz, 1 Lsun ($6\times 10^{-29}$ erg s$^{-1}$ cm$^{-2}$ Hz$^{-1}$) in optical if our line-of-sight is free of ejecta dust, and $10^{36}$ erg s$^{-1}$ ($2\times 10^{-30}$ erg s$^{-1}$ cm$^{-2}$ Hz$^{-1}$) in 2-10 keV X-rays. Our X-ray limits are an order of magnitude less constraining than previous limits because we use a more realistic ejecta absorption model based on three-dimensional neutrino-driven SN explosion models (presented in an accompanying article). The allowed bolometric luminosity of the compact object is 22 Lsun if our line-of-sight is free of ejecta dust, or 138 Lsun if dust-obscured. Depending on assumptions, these values limit the effective temperature of a neutron star to <4-8 MK and do not exclude models, which typically are in the range 3-4 MK. For the simplest accretion model, the accretion rate for an efficiency $��$ is limited to $< 10^{-11} ��^{-1}$ Msun yr$^{-1}$, which excludes most predictions. For pulsar activity modeled by a rotating magnetic dipole in vacuum, the limit on the magnetic field strength ($B$) for a given spin period ($P$) is $B < 10^{14} P^2$ G s$^{-2}$. By combining information about radiation reprocessing and geometry, it is likely that the compact object is a dust-obscured thermally-emitting neutron star, which may appear as a region of higher-temperature ejecta dust emission.

https://escholarship.org/uc/item/2224w6mn