0000000000268083

AUTHOR

Jesper Sollerman

showing 2 related works from this author

Detection of GRB 060927 at z = 5.47: Implications for the Use of Gamma-Ray Bursts as Probes of the End of the Dark Ages

2007

We report on follow-up observations of the GRB 060927 using the ROTSE-IIIa telescope and a suite of larger aperture ground-based telescopes. An optical afterglow was detected 20 s after the burst, the earliest rest-frame detection of optical emission from any GRB. Spectroscopy performed with the VLT about 13 hours after the trigger shows a continuum break at lambda ~ 8070 A produced by neutral hydrogen absorption at z~5.6. We also detect an absorption line at 8158 A which we interpret as SiII at z=5.467. Hence, GRB 060927 is the second most distant GRB with a spectroscopically measured redshift. The shape of the red wing of the spectral break can be fitted by a damped Lyalpha profile with a…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesCosmology: ObservationsSpectral linelaw.inventionTelescopeCosmology: Observations; gamma rays: bursts (GRB 060927)law0103 physical sciences010303 astronomy & astrophysicsReionizationAstrophysics::Galaxy AstrophysicsPhysics010308 nuclear & particles physicsAstrophysics (astro-ph)Astronomy and AstrophysicsGalaxyRedshiftAfterglowQC Physics13. Climate actionSpace and Planetary ScienceDark Agesgamma rays: bursts(GRB 060927)Gamma-ray burstgamma rays: bursts (GRB 060927)Astrophysical Journal
researchProduct

The 30 Year Search for the Compact Object in SN 1987A

2018

Despite more than 30 years of searches, the compact object in Supernova (SN) 1987A has not yet been detected. We present new limits on the compact object in SN 1987A using millimeter, near-infrared, optical, ultraviolet, and X-ray observations from ALMA, VLT, HST, and Chandra. The limits are approximately 0.1 mJy ($0.1\times 10^{-26}$ erg s$^{-1}$ cm$^{-2}$ Hz$^{-1}$) at 213 GHz, 1 Lsun ($6\times 10^{-29}$ erg s$^{-1}$ cm$^{-2}$ Hz$^{-1}$) in optical if our line-of-sight is free of ejecta dust, and $10^{36}$ erg s$^{-1}$ ($2\times 10^{-30}$ erg s$^{-1}$ cm$^{-2}$ Hz$^{-1}$) in 2-10 keV X-rays. Our X-ray limits are an order of magnitude less constraining than previous limits because we use a…

[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]AstrophysicsPhysical Chemistry01 natural sciences7. Clean energyAtomicLuminosityParticle and Plasma PhysicsQB460Astrophysics::Solar and Stellar AstrophysicsAbsorption (logic)10. No inequality010303 astronomy & astrophysicsQBHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsastro-ph.HEAccretion (meteorology)SUPERNOVA REMNANT 1987ASupernovaAstrophysics - High Energy Astrophysical PhenomenaAstronomical and Space SciencesPhysical Chemistry (incl. Structural)NEUTRON-STARSCIRCUMSTELLAR RINGX-RAYSAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesBLUE SUPERGIANTSAstrophysics::Cosmology and Extragalactic AstrophysicsCompact starAstronomy & Astrophysicsstars: neutronneutron [stars]Pulsarindividual [supernovae]0103 physical sciencesblack holes [stars]NuclearINTEGRAL FIELD SPECTROSCOPY010306 general physicsUNDERGROUND SCINTILLATION TELESCOPEsupernovae: individualAstrophysics::Galaxy AstrophysicsOrganic ChemistryMolecularAstronomy and AstrophysicsHUBBLE-SPACE-TELESCOPEEffective temperatureNeutron starRAY EMISSION-LINESPhysics and Astronomyindividual (SN 1987A) [supernovae]13. Climate actionSpace and Planetary ScienceLARGE-MAGELLANIC-CLOUD[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]stars: black holes
researchProduct