Search results for "Supernova"

showing 10 items of 330 documents

Diving below the spin-down limit: Constraints on gravitational waves from the energetic young pulsar PSR J0537-6910

2021

We present a search for continuous gravitational-wave signals from the young, energetic X-ray pulsar PSR J0537-6910 using data from the second and third observing runs of LIGO and Virgo. The search is enabled by a contemporaneous timing ephemeris obtained using NICER data. The NICER ephemeris has also been extended through 2020 October and includes three new glitches. PSR J0537-6910 has the largest spin-down luminosity of any pulsar and is highly active with regards to glitches. Analyses of its long-term and inter-glitch braking indices provided intriguing evidence that its spin-down energy budget may include gravitational-wave emission from a time-varying mass quadrupole moment. Its 62 Hz …

010504 meteorology & atmospheric sciencesAstronomyAstrophysicsEP/ T017325/101 natural sciencesrotationGeneral Relativity and Quantum CosmologyPSR J0537−6910neutron starsLuminosityGravitatational Waves PSR J0537−6910 LIGO VirgoHISTORYLIGOSupernova remnantneutron star010303 astronomy & astrophysicsgravitational waveQCQBpulsarPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/03N157BPhysics/dk/atira/pure/sustainabledevelopmentgoals/partnershipsGravitational waves neutron stars pulsarEPSRCPhysical Sciencesmoment: multipole[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical PhenomenaGravitational wavedata analysis methodPSR J0537-6910Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astronomy & AstrophysicsEphemeris1ST SEARCHGravitational wavesX-raySDG 17 - Partnerships for the GoalsPulsar0103 physical sciences/dk/atira/pure/subjectarea/asjc/1900/1912X-ray: emissiongravitational waves; pulsars; PSR J0537-6910; neutron starsSTFCAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesScience & TechnologyNeutron Star Interior Composition ExplorerR-MODEGravitational waveVirgopulsar: rotationRCUKAstronomy and AstrophysicsLIGONeutron starVIRGOSUPERNOVA REMNANTSpace and Planetary Sciencegravitational radiation: emissionpulsars/dk/atira/pure/subjectarea/asjc/3100/3103Gravitatational Waves[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Very Deep inside the SN 1987A Core Ejecta: Molecular Structures Seen in 3D

2017

Most massive stars end their lives in core-collapse supernova explosions and enrich the interstellar medium with explosively nucleosynthesized elements. Following core collapse, the explosion is subject to instabilities as the shock propagates outwards through the progenitor star. Observations of the composition and structure of the innermost regions of a core-collapse supernova provide a direct probe of the instabilities and nucleosynthetic products. SN 1987A in the Large Magellanic Cloud (LMC) is one of very few supernovae for which the inner ejecta can be spatially resolved but are not yet strongly affected by interaction with the surroundings. Our observations of SN 1987A with the Ataca…

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSubmillimeter Arraychemistry.chemical_compound0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsLarge Magellanic CloudEjecta010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesQBPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Astronomy and AstrophysicsSilicon monoxideAstrophysics - Astrophysics of GalaxiesInterstellar mediumCore (optical fiber)StarsSupernovachemistryAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Astrophysics - High Energy Astrophysical PhenomenaThe Astrophysical Journal
researchProduct

Detection of X-ray flares from AX J1714.1-3912, the unidentified source near RX J1713.7-3946

2018

Molecular clouds are predicted to emit nonthermal X-rays when they are close to particle-accelerating supernova remnants (SNRs), and the hard X-ray source AX J1714.1-3912, near the SNR RX J1713.7-3946, has long been considered a candidate for diffuse nonthermal emission associated with cosmic rays diffusing from the remnant to a closeby molecular cloud. We aim at ascertaining the nature of this source by analyzing two dedicated X-ray observations performed with Suzaku and Chandra. We extracted images from the data in various energy bands, spectra, and light curves and studied the long-term evolution of the X-ray emission on the basis of the ~4.5 yr time separation between the two observatio…

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayContext (language use)Astrophysics01 natural sciencesSpectral lineX-rays: binariesSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesX-rays: bursts010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsISM: supernova remnants0105 earth and related environmental sciencesHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsMolecular cloudAstronomy and AstrophysicsLight curveX-rays: ISMSupernovaOrders of magnitude (time)Space and Planetary ScienceSupergiantAstrophysics - High Energy Astrophysical Phenomena
researchProduct

XMM-Newton observation of the supernova remnant Kes 78 (G32.8-0.1): Evidence for shock-cloud interaction

2017

The Galactic supernova remnant Kes 78 is surrounded by dense molecular clouds, whose projected position overlaps with the extended HESS gamma-ray source HESS J1852-000. The X-ray emission from the remnant has been recently revealed by Suzaku observations, which have shown indications for a hard X-ray component in the spectra, possibly associated with synchrotron radiation. We aim at describing the spatial distribution of the physical properties of the X-ray emitting plasma and at revealing the effects of the interaction of the remnant with the inhomogeneous ambient medium. We also aim at investigating the origin of the gamma-ray emission, which may be Inverse Compton radiation associated wi…

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaHadronSynchrotron radiationFOS: Physical sciencesElectronAstrophysicsISM: individual objects: Kes 7801 natural sciencesSpectral linelaw.inventionlawISM: cloud0103 physical sciencesSupernova remnant010303 astronomy & astrophysicsISM: supernova remnantAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Molecular cloudAstronomy and AstrophysicsPlasmaAstronomy and AstrophysicAcceleration of particleSynchrotronX-rays: ISM13. Climate actionSpace and Planetary ScienceAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Deep XMM-Newton Observations Reveal the Origin of Recombining Plasma in the Supernova Remnant W44

2019

Recent X-ray studies revealed over-ionized recombining plasmas (RPs) in a dozen mixed-morphology (MM) supernova remnants (SNRs). However, the physical process of the over-ionization has not been fully understood yet. Here we report on spatially resolved spectroscopy of X-ray emission from W44, one of the over-ionized MM-SNRs, using XMM-Newton data from deep observations, aiming to clarify the physical origin of the over-ionization. We find that combination of low electron temperature and low recombination timescale is achieved in the region interacting with dense molecular clouds. Moreover, a clear anti-correlation between the electron temperature and the recombining timescale is obtained f…

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaSupernova remnants (1667)FOS: Physical sciencesAstrophysicsMolecular cloud01 natural sciencesX-ray astronomySettore FIS/05 - Astronomia E AstrofisicaPlasma astrophysics (1261)Supernova remnant0103 physical sciencesPlasma astrophysicsSupernova remnantAdiabatic processSpectroscopy010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsX-ray astronomyMolecular cloudAstronomy and AstrophysicsPlasmaSupernovaSpace and Planetary ScienceMolecular clouds (1072)Electron temperatureX-ray astronomy (1810)Astrophysics - High Energy Astrophysical PhenomenaThe Astrophysical Journal
researchProduct

Massive Oe/Be stars at low metallicity: Candidate progenitors of long GRBs?

2010

At low metallicity the B-type stars rotate faster than at higher metallicity, typically in the SMC. As a consequence, it was expected a larger number of fast rotators in the SMC than in the Galaxy, in particular more Be/Oe stars. With the ESO-WFI in its slitless mode, the SMC open clusters were examined and an occurence of Be stars 3 to 5 times larger than in the Galaxy was found. The evolution of the angular rotational velocity seems to be the main key on the understanding of the specific behaviour and of the stellar evolution of such stars at different metallicities. With the results of this WFI study and using observational clues on the SMC WR stars and massive stars, as well as the theo…

010504 meteorology & atmospheric sciencesMetallicityAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesstars: rotation0103 physical sciencesMagellanic CloudsAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsStellar evolutionSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysics[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]Astronomy and Astrophysicsgamma rays: general[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]GalaxyStarsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary Sciencestars: supernovae: generalAstrophysics::Earth and Planetary AstrophysicsOpen cluster
researchProduct

Matter Mixing in Aspherical Core-collapse Supernovae: Three-dimensional Simulations with Single Star and Binary Merger Progenitor Models for SN 1987A

2019

We perform three-dimensional hydrodynamic simulations of aspherical core-collapse supernovae focusing on the matter mixing in SN 1987A. The impacts of four progenitor (pre-supernova) models and parameterized aspherical explosions are investigated. The four pre-supernova models include a blue supergiant (BSG) model based on a slow merger scenario developed recently for the progenitor of SN 1987A (Urushibata et al. 2018). The others are a BSG model based on a single star evolution and two red supergiant (RSG) models. Among the investigated explosion (simulation) models, a model with the binary merger progenitor model and with an asymmetric bipolar-like explosion, which invokes a jetlike explo…

010504 meteorology & atmospheric sciencesSupergiant starAstrophysics::High Energy Astrophysical PhenomenaBinary numberchemistry.chemical_elementNeutron starFOS: Physical sciencesHydrodynamical simulationAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesCore-collapse supernovaeAstrophysics::Solar and Stellar AstrophysicsRed supergiant010303 astronomy & astrophysicsMixing (physics)HeliumStellar evolutionary modelSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesLine (formation)PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Astronomy and AstrophysicsSupernova dynamicSupernovaNeutron starchemistryAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceExplosive nucleosynthesisSupergiantAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Indication of a Pulsar Wind Nebula in the Hard X-Ray Emission from SN 1987A

2021

Since the day of its explosion, SN 1987A (SN87A) was closely monitored with the aim to study its evolution and to detect its central compact relic. The detection of neutrinos from the supernova strongly supports the formation of a neutron star (NS). However, the constant and fruitless search for this object has led to different hypotheses on its nature. Up to date, the detection in the ALMA data of a feature somehow compatible with the emission arising from a proto Pulsar Wind Nebula (PWN) is the only hint of the existence of such elusive compact object. Here we tackle this 33-years old issue by analyzing archived observations of SN87A performed Chandra and NuSTAR in different years. We fir…

010504 meteorology & atmospheric sciencesSupernova remnantsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesSynchrotron radiationAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsCompact starX-ray sources01 natural sciencesPulsar wind nebulaNeutron starsX-ray astronomy0103 physical sciencesPlasma astrophysicsEjectaX-ray point sources010303 astronomy & astrophysicsCompact objectsX-ray observatoriesShocksAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsX-ray astronomyAstronomy and AstrophysicsNeutron starSupernovaInterstellar synchrotron emissionSpace and Planetary ScienceNeutrinoAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Gravitational wave signature of proto-neutron star convection: I. MHD numerical simulations

2021

Gravitational waves provide a unique and powerful opportunity to constrain the dynamics in the interior of proto-neutron stars during core collapse supernovae. Convective motions play an important role in generating neutron stars magnetic fields, which could explain magnetar formation in the presence of fast rotation. We compute the gravitational wave emission from proto-neutron star convection and its associated dynamo, by post-processing three-dimensional MHD simulations of a model restricted to the convective zone in the anelastic approximation. We consider two different proto-neutron star structures representative of early times (with a convective layer) and late times (when the star is…

010504 meteorology & atmospheric sciencesdimension: 3neutron star: magnetic fieldtorusAstrophysicsMagnetar01 natural sciencesrotationstarstrong fieldMagnetarsAstrophysics::Solar and Stellar Astrophysicsgravitational radiation: spectrumgravitational radiation: signatureSupernova core collapse010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsMethods numerical[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]formationscalingSupernovaAmplitudeAstrophysics - Solar and Stellar AstrophysicsConvection zoneAstrophysics - High Energy Astrophysical PhenomenaDynamosupernova: collapseprotoneutron starFOS: Physical sciencesConvectionsymmetry: axialGravitational waves0103 physical sciencesstructurenumerical calculationsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesGravitational waveAstronomy and AstrophysicsmagnetarNeutron star13. Climate actionSpace and Planetary Scienceefficiencygravitational radiation: emissionMagnetohydrodynamics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph][PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph]
researchProduct

Revised rates for the stellar triple-alpha process from measurement of C-12 nuclear resonances

2005

4 pages, 3 figures.-- PMID: 15650733 [PubMed].

ASTROPHYSICSchemistry.chemical_elementAstrophysics7. Clean energy01 natural sciencesTriple-alpha processNuclear physicsNucleosynthesis0103 physical sciencesELEMENTSPARTICLESBETA-DECAY010303 astronomy & astrophysicsHeliumPhysicsNUCLEOSYNTHESISMultidisciplinary010308 nuclear & particles physicsB-12Carbon-12Cell BiologyAlpha particleStarsSupernovachemistry13. Climate actionExcited stateSTARS
researchProduct