6533b839fe1ef96bd12a5d09
RESEARCH PRODUCT
Deep XMM-Newton Observations Reveal the Origin of Recombining Plasma in the Supernova Remnant W44
Randall K. SmithSalvatore OrlandoFabrizio BocchinoMarco MiceliHiromichi OkonTakaaki TanakaHiroyuki UchidaHiroya YamaguchiTakeshi Go TsuruMasumichi SetaRandall K. SmithSatoshi YoshiikeSalvatore OrlandoFabrizio BocchinoMarco Micelisubject
010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaSupernova remnants (1667)FOS: Physical sciencesAstrophysicsMolecular cloud01 natural sciencesX-ray astronomySettore FIS/05 - Astronomia E AstrofisicaPlasma astrophysics (1261)Supernova remnant0103 physical sciencesPlasma astrophysicsSupernova remnantAdiabatic processSpectroscopy010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsX-ray astronomyMolecular cloudAstronomy and AstrophysicsPlasmaSupernovaSpace and Planetary ScienceMolecular clouds (1072)Electron temperatureX-ray astronomy (1810)Astrophysics - High Energy Astrophysical Phenomenadescription
Recent X-ray studies revealed over-ionized recombining plasmas (RPs) in a dozen mixed-morphology (MM) supernova remnants (SNRs). However, the physical process of the over-ionization has not been fully understood yet. Here we report on spatially resolved spectroscopy of X-ray emission from W44, one of the over-ionized MM-SNRs, using XMM-Newton data from deep observations, aiming to clarify the physical origin of the over-ionization. We find that combination of low electron temperature and low recombination timescale is achieved in the region interacting with dense molecular clouds. Moreover, a clear anti-correlation between the electron temperature and the recombining timescale is obtained from each of the regions with and without the molecular clouds. The results are well explained if the plasma was over-ionized by rapid cooling through thermal conduction with the dense clouds hit by the blast wave of W44. Given that a few other over-ionized SNRs show evidence for adiabatic expansion as the major driver of the rapid cooling, our new result indicates that both processes can contribute to over-ionization in SNRs, with the dominant channel depending on the evolutionary stage.
year | journal | country | edition | language |
---|---|---|---|---|
2019-12-17 | The Astrophysical Journal |