0000000000530722

AUTHOR

Marco Miceli

0000-0003-0876-8391

showing 109 related works from this author

XMM-Newton observation of the supernova remnant Kes 78 (G32.8-0.1): Evidence for shock-cloud interaction

2017

The Galactic supernova remnant Kes 78 is surrounded by dense molecular clouds, whose projected position overlaps with the extended HESS gamma-ray source HESS J1852-000. The X-ray emission from the remnant has been recently revealed by Suzaku observations, which have shown indications for a hard X-ray component in the spectra, possibly associated with synchrotron radiation. We aim at describing the spatial distribution of the physical properties of the X-ray emitting plasma and at revealing the effects of the interaction of the remnant with the inhomogeneous ambient medium. We also aim at investigating the origin of the gamma-ray emission, which may be Inverse Compton radiation associated wi…

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaHadronSynchrotron radiationFOS: Physical sciencesElectronAstrophysicsISM: individual objects: Kes 7801 natural sciencesSpectral linelaw.inventionlawISM: cloud0103 physical sciencesSupernova remnant010303 astronomy & astrophysicsISM: supernova remnantAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Molecular cloudAstronomy and AstrophysicsPlasmaAstronomy and AstrophysicAcceleration of particleSynchrotronX-rays: ISM13. Climate actionSpace and Planetary ScienceAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Generation of radiative knots in a randomly pulsed protostellar jet

2009

HH objects are characterized by a complex knotty morphology detected mainly along the axis of protostellar jets in a wide range of bands. Evidence of interactions between knots formed in different epochs have been found, suggesting that jets may result from the ejection of plasma blobs from the source. We aim at investigating the physical mechanism leading to the irregular knotty structure observed in jets in different bands and the complex interactions occurring among blobs of plasma ejected from the stellar source. We perform 2D axisymmetric HD simulations of a randomly ejected pulsed jet. The jet consists of a train of blobs which ram with supersonic speed into the ambient medium. The in…

PhysicsJet (fluid)Proper motionAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsPlasmaThermal conductionAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceReflection (physics)Radiative transferOblique shockSupersonic speedhydrodynamics – Herbig-Haro objects – ISM: jets and outflows – X-rays: ISMSolar and Stellar Astrophysics (astro-ph.SR)Astronomy and Astrophysics
researchProduct

The fully developed remnant of a neutrino-driven supernova: Evolution of ejecta structure and asymmetries in SNR Cassiopeia A

2020

Abridged. We aim at exploring to which extent the remnant keeps memory of the asymmetries that develop stochastically in the neutrino-heating layer due to hydrodynamic instabilities (e.g., convective overturn and the standing accretion shock instability) during the first second after core bounce. We coupled a 3D HD model of a neutrino-driven SN explosion with 3D MHD/HD simulations of the remnant formation. The simulations cover 2000 years of expansion and include all physical processes relevant to describe the complexities in the SN evolution and the subsequent interaction of the stellar debris with the wind of the progenitor star. The interaction of large-scale asymmetries left from the ea…

Shock waveAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesContext (language use)Astrophysics01 natural sciencesShock wavesSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesConvective overturnAstrophysics::Solar and Stellar AstrophysicsEjecta010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsISM: supernova remnantsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Accretion (meteorology)010308 nuclear & particles physicsAstronomy and AstrophysicsSupernovae: individual: Cassiopeia AX-rays: ISMCassiopeia ASupernovaNeutron starSpace and Planetary ScienceInstabilitiesHydrodynamicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

AE Aurigae: First detection of non-thermal X-ray emission from a bow shock produced by a runaway star

2012

Runaway stars produce shocks when passing through interstellar medium at supersonic velocities. Bow shocks have been detected in the mid-infrared for several high-mass runaway stars and in radio waves for one star. Theoretical models predict the production of high-energy photons by non-thermal radiative processes in a number sufficiently large to be detected in X-rays. To date, no stellar bow shock has been detected at such energies. We present the first detection of X-ray emission from a bow shock produced by a runaway star. The star is AE Aur, which was likely expelled from its birthplace due to the encounter of two massive binary systems and now is passing through the dense nebula IC 405…

Shock waveAstrofísicaCiencias Astronómicasstars: kinematics and dynamicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsX-rays: generalISM: cloudsmassive [stars]general [X-rays]Radiative transferISM: clouds radiation mechanisms: non-thermal stars: individual: AE Aur stars: kinematics and dynamics stars: massive X-rays: generalAstrophysics::Solar and Stellar AstrophysicsBow shock (aerodynamics)kinematics and dynamics [stars]Solar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsCosmic dustPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)NebulaAstronomy and Astrophysicsradiation mechanisms: non-thermalnon-thermal [radiation mechanisms]Astrophysics - Astrophysics of GalaxiesInterstellar mediumAstronomíastars: individual (AE Aur)stars: massiveStarsindividual (AE Aur) [stars]Astrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Astrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomenaclouds [ISM]Radio wave
researchProduct

Discovery of a jet-like structure with overionized plasma in the SNR IC443

2018

IC443 is a supernova remnant located in a quite complex environment since it interacts with nearby clouds. Indications for the presence of overionized plasma have been found though the possible physical causes of overionization are still debated. Moreover, because of its peculiar position and proper motion, it is not clear if the pulsar wind nebula (PWN) within the remnant is the relic of the IC443 progenitor star or just a rambling one seen in projection on the remnant. Here we address the study of IC443 plasma in order to clarify the relationship PWN-remnant, the presence of overionization and the origin of the latter. We analyzed two \emph{XMM-Newton} observations producing background-su…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Jet (fluid)ISM: individual objects: IC443pulsars: individual: CXOU J061705.3+222127010308 nuclear & particles physicsMolecular cloudAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsContext (language use)Astrophysics01 natural sciencesPulsar wind nebulaSupernovaNeutron starSpace and Planetary Science0103 physical sciencesEjectaSupernova remnantAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsISM: supernova remnantAstrophysics::Galaxy Astrophysics
researchProduct

Non-thermal processes in coronae and beyond

2013

This contribution summarizes the splinter session “Non-thermal processes in coronae and beyond” held at the Cool Stars 17 workshop in Barcelona in 2012. It covers new developments in high energy non-thermal effects in the Earth's exosphere, solar and stellar flares, the diffuse emission in star forming regions and reviews the state and the challenges of the underlying atomic databases. (© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

PhysicsHigh energyStarsSolar flareSpace and Planetary ScienceThermalAstronomyAstronomy and AstrophysicsMethods laboratoryExosphereAtomic dataAstronomische Nachrichten
researchProduct

MODELING SNR CASSIOPEIA A from the SUPERNOVA EXPLOSION to ITS CURRENT AGE: The ROLE of POST-EXPLOSION ANISOTROPIES of EJECTA

2016

The remnants of core-collapse supernovae (SNe) have complex morphologies that may reflect asymmetries and structures developed during the progenitor SN explosion. Here we investigate how the morphology of the SNR Cassiopeia A (Cas A) reflects the characteristics of the progenitor SN with the aim to derive the energies and masses of the post-explosion anisotropies responsible for the observed spatial distribution of Fe and Si/S. We model the evolution of Cas A from the immediate aftermath of the progenitor SN to the three-dimensional interaction of the remnant with the surrounding medium. The post-explosion structure of the ejecta is described by small-scale clumping of material and larger-s…

Shock waveshock waveFOS: Physical sciencesCosmic rayAstrophysicsKinetic energy01 natural sciencessupernova remnants; shock waves; supernovae: individual (Cassiopeia A); Space and Planetary Science; Astronomy and Astrophysics [cosmic rays; hydrodynamics; instabilities; ISM]0103 physical sciencessupernovae: individual (Cassiopeia A)hydrodynamics instabilitiesAnisotropyEjecta010303 astronomy & astrophysicsCosmic rayscosmic rayISM: supernova remnantISM: supernova remnantshydrodynamicHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsinstabilitie010308 nuclear & particles physicsCosmic rays hydrodynamics instabilities ISM: supernova remnants shock waves;supernovae: individual (Cassiopeia A)Astronomy and Astrophysicsshock wavesCassiopeia ASupernovaSpace and Planetary ScienceAstrophysics - High Energy Astrophysical PhenomenaEnergy (signal processing)
researchProduct

Radiative accretion shocks along nonuniform stellar magnetic fields in classical T Tauri stars

2013

(abridged) AIMS. We investigate the dynamics and stability of post-shock plasma streaming along nonuniform stellar magnetic fields at the impact region of accretion columns. We study how the magnetic field configuration and strength determine the structure, geometry, and location of the shock-heated plasma. METHODS. We model the impact of an accretion stream onto the chromosphere of a CTTS by 2D axisymmetric magnetohydrodynamic simulations. Our model takes into account the gravity, the radiative cooling, and the magnetic-field-oriented thermal conduction. RESULTS. The structure, stability, and location of the shocked plasma strongly depend on the configuration and strength of the magnetic f…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesField strengthX-rays: starsAstrophysicsstars: pre-main sequence01 natural sciencesmagnetohydrodynamics (MHD)pre-main sequence X-rays: stars [accretion accretion disks instabilities magnetohydrodynamics (MHD) shock waves stars]010305 fluids & plasmasSettore FIS/05 - Astronomia E Astrofisicaaccretion0103 physical sciencesRadiative transferAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsChromosphereSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsPhysicsaccretion disksAstronomy and AstrophysicsPlasmashock wavesAccretion (astrophysics)Magnetic fieldT Tauri starAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceinstabilitiesPhysics::Space PhysicsOblique shockAstrophysics::Earth and Planetary Astrophysicsaccretion accretion disks instabilities magnetohydrodynamics (MHD) shock waves stars: pre-main sequence X-rays: stars[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

High Energy Emission from Shocks Due to Jets and Accretion in Young Stars with Disks: Combining Observations, Numerical Models, and Laboratory Experi…

2018

High energy emission from young stars with disks, with all their components due to accretion and outflow activity, can have a deep impact on the evolution of their disks and on the formation of exo-planetary systems. An inter-disciplinary approach, which combines multi-wavelength observations, magnetohydrodynamical models, and laboratory experiments, allows us to get a more complete description of the accretion/ejection phenomena characterizing young stars. We discuss the case of the HH 154 jet, its X-ray emission localized at the base of the jet and its complex morphology, comparing observations, models, and laser experiments. We present the comparison between magnetohydrodynamical models …

PhysicsHigh energyAstrophysics::High Energy Astrophysical PhenomenaAstrophysics::Cosmology and Extragalactic AstrophysicsNumerical modelsAstrophysicsLaserAccretion (astrophysics)law.inventionTelescopesymbols.namesakeStarslawsymbolsAstrophysics::Solar and Stellar AstrophysicsOutflowAstrophysics::Earth and Planetary Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Doppler effectAstrophysics::Galaxy Astrophysics
researchProduct

X-ray emission from stellar jets by collision against high-density molecular clouds: an application to HH 248

2015

We investigate the plausibility of detecting X-ray emission from a stellar jet that impacts against a dense molecular cloud. This scenario may be usual for classical T Tauri stars with jets in dense star-forming complexes. We first model the impact of a jet against a dense cloud by 2D axisymmetric hydrodynamic simulations, exploring different configurations of the ambient environment. Then, we compare our results with XMM-Newton observations of the Herbig-Haro object HH 248, where extended X-ray emission aligned with the optical knots is detected at the edge of the nearby IC 434 cloud. Our simulations show that a jet can produce plasma with temperatures up to 10 MK, consistent with producti…

AstrofísicaHERBIGHARO OBJECTSJETS AND OUTFLOWS [ISM]Astrophysics::High Energy Astrophysical PhenomenaRotational symmetryFOS: Physical sciencesCloud computingAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsISM [X-RAYS]Space (mathematics)LuminosityHYDRODYNAMICS//purl.org/becyt/ford/1 [https]INDIVIDUAL OBJECTS (HH 248) [ISM]hydrodynamics Herbig-Haro objects ISM: individual objects: HH 248 ISM: jets and outflows X-rays: ISMAstrophysics::Galaxy AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)PhysicsJet (fluid)business.industryMolecular cloudAstronomy and Astrophysics//purl.org/becyt/ford/1.3 [https]PlasmaAstronomíaT Tauri starAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceHerbig–Haro objectsbusiness
researchProduct

3D MHD modeling of the expanding remnant of SN 1987A : role of magnetic field and non-thermal radio emission

2018

Aims. We investigate the role played by a pre-supernova (SN) ambient magnetic field on the dynamics of the expanding remnant of SN 1987A and the origin and evolution of the radio emission from the remnant, in particular, during the interaction of the blast wave with the nebula surrounding the SN. Methods. We model the evolution of SN 1987A from the breakout of the shock wave at the stellar surface to the expansion of its remnant through the surrounding nebula by 3D MHD simulations. The model considers the radiative cooling, the deviations from equilibrium of ionization, the deviation from temperature-equilibration between electrons and ions, and a plausible configuration of the pre-SN ambie…

Shock waveH II regionMagnetohydrodynamics (MHD)shock waveAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesField strengthISM [radio continuum]AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesmagnetohydrodynamics (MHD)Radio spectrumindividual: SN 1987A [supernovae]0103 physical sciencesISM [X-rays]010303 astronomy & astrophysicsBlast waveISM: supernova remnantAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Nebulasupernovae: individual: SN 1987A010308 nuclear & particles physicssupernova remnants [ISM]Astronomy and Astrophysicsshock wavesX-rays: ISMMagnetic fieldradio continuum: ISMSpace and Planetary ScienceMagnetohydrodynamicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

The shape of the cutoff in the synchrotron emission of SN 1006 observed with XMM-Newton

2013

Synchrotron X-ray emission from the rims of young supernova remnants allows us to study the high-energy tail of the electrons accelerated at the shock front. The analysis of X-ray spectra can provide information on the physical mechanisms that limit the energy achieved by the electrons in the acceleration process. We aim at verifying whether the maximum electron energy in SN 1006 is limited by synchrotron losses and at obtaining information on the shape of the cutoff in the X-ray synchrotron emission. We analyzed the deep observations of the XMM-Newton SN 1006 Large Program. We performed spatially resolved spectral analysis of a set of small regions in the nonthermal limbs and studied the X…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesISM: individual objects: SN 1006AstrophysicsElectron01 natural sciencesSpectral linelaw.inventionMomentumAccelerationlaw0103 physical sciencesRadiative transferCutoff010306 general physics010303 astronomy & astrophysicsISM: supernova remnantAstrophysics::Galaxy AstrophysicsISM: supernova remnantsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAstronomy and AstrophysicsAstronomy and AstrophysicX-rays: ISMSynchrotronSupernovaSpace and Planetary ScienceAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

XMM-Newton Large Program on SN1006 - I: Methods and Initial Results of Spatially-Resolved Spectroscopy

2015

Based on our newly developed methods and the XMM-Newton large program of SN1006, we extract and analyze the spectra from 3596 tessellated regions of this SNR each with 0.3-8 keV counts $>10^4$. For the first time, we map out multiple physical parameters, such as the temperature ($kT$), electron density ($n_e$), ionization parameter ($n_et$), ionization age ($t_{ion}$), metal abundances, as well as the radio-to-X-ray slope ($\alpha$) and cutoff frequency ($\nu_{cutoff}$) of the synchrotron emission. We construct probability distribution functions of $kT$ and $n_et$, and model them with several Gaussians, in order to characterize the average thermal and ionization states of such an extended s…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsElectron densityAstrophysics::High Energy Astrophysical Phenomenadata analysis cosmic rays ISM: supernova remnants X-rays: ISM [acceleration of particles shock waves methods]FOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysicsacceleration of particles shock waves methods: data analysis cosmic rays ISM: supernova remnants X-rays: ISMSpectral lineInterstellar mediumSupernovaSpace and Planetary ScienceIonizationAstrophysics::Solar and Stellar AstrophysicsSpectroscopySupernova remnantAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Equivalent widthAstrophysics::Galaxy Astrophysics
researchProduct

Widespread Nanoflare Variability Detected with Hinode/X-Ray Telescope in a Solar Active Region

2011

It is generally agreed that small impulsive energy bursts called nanoflares are responsible for at least some of the Sun's hot corona, but whether they are the explanation for most of the multimillion-degree plasma has been a matter of ongoing debate. We present here evidence that nanoflares are widespread in an active region observed by the X-Ray Telescope on board the Hinode mission. The distributions of intensity fluctuations have small but important asymmetries, whether taken from individual pixels, multipixel subregions, or the entire active region. Negative fluctuations (corresponding to reduced intensity) are greater in number but weaker in amplitude, so that the median fluctuation i…

Physicsmedia_common.quotation_subjectAstronomy and AstrophysicsAstrophysicsPlasmaactivity Sun: corona Sun: X-rays gamma rays [Sun]Poisson distributionCoronaAsymmetryIntensity (physics)Nanoflareslaw.inventionTelescopesymbols.namesakeAmplitudeSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary SciencelawPhysics::Space PhysicssymbolsSun: activity Sun: corona Sun: X-rays gamma raysAstrophysics::Solar and Stellar Astrophysicsmedia_common
researchProduct

Shock–cloud interactions in the Vela SNR: preliminary results of an XMM-Newton observation

2004

Abstract The study of the clumpy and irregular features in the X-ray emission of middle-aged supernova remnants shells allows us to shed light on the various characteristic of the interstellar medium, like its structure and composition. We have observed with XMM-Newton a small knot in the Vela SNR, which previous ROSAT studies have indicated as one of the best examples of an interaction between the SNR shock and an isolated cloud. We present preliminary results of this study. Thanks to the combination of good spectral and spatial resolution of the EPIC camera, we have realized maps of the X-ray emission in three different bands, pinpointing the contribution from different spatial regions. W…

PhysicsAtmospheric ScienceVela Supernova RemnantPixelAstrophysics::High Energy Astrophysical PhenomenaAerospace EngineeringAstronomyAstronomy and AstrophysicsAstrophysicsPhoton energyVelaInterstellar mediumSupernovaGeophysicsSpace and Planetary ScienceROSATGeneral Earth and Planetary SciencesImage resolutionAstrophysics::Galaxy AstrophysicsAdvances in Space Research
researchProduct

An X-ray characterization of the central region of the supernova remnant G332.5-5.6

2015

Aims. We present an X-ray analysis of the central region of supernova remnant (SNR) G332.5-5.6 through an exhaustive analysis of XMM-Netwon observations with complementary infrared observations. We characterize and discuss the origin of the observed X-ray morphology, which presents a peculiar plane edge over the west side of the central region. Methods. The morphology and spectral properties of the X-ray SNR were studied using a single full frame XMM-Netwon observation in the 0.3 to 10.0 keV energy band. Archival infrared WISE observations at 8, 12 and 24 μm were also used to investigate the properties of the source and its surroundings at different wavelengths. Results. The results show th…

individual objects: G332.5-5.6 [ISM]Ciencias AstronómicasISM: individual objects: G332.5-5.6InfraredSupernova remnantsCiencias FísicasAstrophysics::High Energy Astrophysical PhenomenaAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsRadiation//purl.org/becyt/ford/1 [https]Interstellar mediumIonizationX-raysRadiation mechanismsISM [X-rays]Supernova remnantCiencias Exactas y NaturalesAstrophysics::Galaxy AstrophysicsG332.5-5.6 (ISM individual objects)ISM: supernova remnantsPhysicssupernova remnants [ISM]Atomic emission spectroscopyAstronomy and AstrophysicsPlasma//purl.org/becyt/ford/1.3 [https]Thermal mechanismsRadiation mechanisms: thermalX-rays: ISMInterstellar mediumISM: individual objects: G332.5-5.6 ISM: supernova remnants X-rays: ISM radiation mechanisms: thermalAstronomíaWavelengthSpace and Planetary Sciencethermal [Radiation mechanisms]CIENCIAS NATURALES Y EXACTAS
researchProduct

On the metal abundances inside mixed-morphology supernova remnants: the case of IC 443  and G166.0+4.3

2009

Recent developments on the study of mixed morphology supernova remnants (MMSNRs) have revealed the presence of metal rich X-ray emitting plasma inside a fraction of these remnant, a feature not properly addressed by traditional models for these objects. Radial profiles of thermodynamical and chemical parameters are needed for a fruitful comparison of data and model of MMSNRs, but these are available only in a few cases. We analyze XMM-Newton data of two MMSNRs, namely IC443 and G166.0+4.3, previously known to have solar metal abundances, and we perform spatially resolved spectral analysis of the X-ray emission. We detected enhanced abundances of Ne, Mg and Si in the hard X-ray bright peak i…

PhysicsMorphology (linguistics)extinctionAstrophysics::High Energy Astrophysical PhenomenaExtinction (astronomy)FOS: Physical sciencesAstronomy and AstrophysicsContext (language use)X-rays: individuals: IC 443AstrophysicsPlasmaAstrophysics - Astrophysics of GalaxiesX-rays: ISMMetalSupernovaISM: dustX-rays: individuals: G166.0+4.3 ISMSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)visual_artRadiative transfervisual_art.visual_art_mediumSpectral analysisAstrophysics::Galaxy AstrophysicsISM: supernova remnant
researchProduct

Generation of radiative knots in a randomly pulsed protostellar jet. II. X-ray emission

2010

Protostellar jets are known to emit in a wide range of bands, from radio to IR to optical bands, and to date also about ten X-ray emitting jets have been detected, with a rate of discovery of about one per year. We aim at investigating the mechanism leading to the X-ray emission detected in protostellar jets and at constraining the physical parameters that describe the jet/ambient interaction by comparing our model predictions with observations. We perform 2D axisymmetric hydrodynamic simulations of the interaction between a supersonic jet and the ambient. The jet is described as a train of plasma blobs randomly ejected by the stellar source along the jet axis. We explore the parameter spac…

PhysicsJet (fluid)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsContext (language use)AstrophysicsPlasmaParameter spaceX-rays: ISMLuminosityAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceRadiative transferHerbig–Haro objectDensity contrastHerbig-Haro objectISM: jets and outflowSolar and Stellar Astrophysics (astro-ph.SR)hydrodynamic
researchProduct

X-ray emitting hot plasma in solar active regions observed by the SphinX spectrometer

2012

Aims. The detection of very hot plasma in the quiescent corona is important for diagnosing heating mechanisms. The presence and the amount of such hot plasma is currently debated. The SphinX instrument on-board the CORONAS-PHOTON mission is sensitive to X-ray emission of energies well above 1 keV and provides the opportunity to detect the hot plasma component. Methods. We analysed the X-ray spectra of the solar corona collected by the SphinX spectrometer in May 2009 (when two active regions were present). We modelled the spectrum extracted from the whole Sun over a time window of 17 days in the 1.34− 7k eV energy band by adopting the latest release of the APED database. Results. The SphinX …

Physics010504 meteorology & atmospheric sciencesSpectrometerX-rayBremsstrahlungAstronomy and AstrophysicsPlasmaAstrophysics01 natural sciencesCoronaSpectral lineSun: corona methods: observational techniques: spectroscopicStars13. Climate actionSpace and Planetary Science0103 physical sciencesCalibration010303 astronomy & astrophysics0105 earth and related environmental sciencesAstronomy & Astrophysics
researchProduct

Indications of a Si-rich bilateral jet of ejecta in the Vela SNR observed with XMM-Newton

2017

Context. The Vela supernova remnant displays several ejecta, which are fragment-like features protruding beyond the front of its primary blast shock wave. They appear to be "shrapnel", bowshock-shaped relics of the supernova explosion. One of these pieces of shrapnel (A), located in the northeastern edge of the remnant, is peculiar because its X-ray spectrum exhibits a high Si abundance, in contrast to the other observed ejecta fragments, which show enhanced O, Ne, and Mg abundances. Aims. In this Letter we present the analysis of another ejecta fragment located opposite to shrapnel A with respect to the center of the shell, in the southwestern boundary of the remnant, named shrapnel G. We …

Shock waveCiencias AstronómicasSupernova remnantsCiencias FísicasAstrophysics::High Energy Astrophysical Phenomenaindividual objects: Vela SNR [ISM]FOS: Physical sciencesContext (language use)AstrophysicsVela01 natural sciences//purl.org/becyt/ford/1 [https]Nucleosynthesis0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsISM [X-rays]EjectaVELA SNR010303 astronomy & astrophysicsISM: supernova remnantAstrophysics::Galaxy AstrophysicsISM: supernova remnantsLine (formation)PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Vela Supernova RemnantX rays010308 nuclear & particles physicssupernova remnants [ISM]Astronomy and Astrophysics//purl.org/becyt/ford/1.3 [https]Astronomy and AstrophysicX-rays: ISMAstronomíaSupernovaISM: individual objects: Vela SNRSpace and Planetary ScienceAstrophysics - High Energy Astrophysical PhenomenaCIENCIAS NATURALES Y EXACTASInsterstellar mediumAstronomy & Astrophysics
researchProduct

Modeling the shock-cloud interaction in SN 1006: unveiling the origin of nonthermal X-ray and gamma-ray emission

2016

The supernova remnant SN 1006 is a source of high-energy particles and its southwestern limb is interacting with a dense ambient cloud, thus being a promising region for gamma-ray hadronic emission. We aim at describing the physics and the nonthermal emission associated with the shock-cloud interaction to derive the physical parameters of the cloud (poorly constrained by the data analysis), to ascertain the origin of the observed spatial variations in the spectral properties of the X-ray synchrotron emission, and to predict spectral and morphological features of the resulting gamma-ray emission. We performed 3-D magnetohydrodynamic simulations modeling the evolution of SN 1006 and its inter…

AstrofísicaProper motionMagnetohydrodynamics (MHD)[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]Astrophysics::High Energy Astrophysical PhenomenaHadronFOS: Physical sciencesContext (language use)AstrophysicsISM: individual objects: SN 100601 natural sciencesISM: cloudslaw.inventionSettore FIS/05 - Astronomia E AstrofisicalawISM: cloud0103 physical sciencesMagnetohydrodynamic driveSupernova remnant010303 astronomy & astrophysicsISM: supernova remnantAstrophysics::Galaxy Astrophysicsacceleration of particlesISM: supernova remnantsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsclouds; ISM: individual objects: SN 1006; ISM: supernova remnants; Magnetohydrodynamics (MHD); X-rays: ISM; Astronomy and Astrophysics; Space and Planetary Science [Acceleration of particles; ISM]X-rayAstronomy and AstrophysicsAstronomy and AstrophysicAcceleration of particleSynchrotronX-rays: ISMShock (mechanics)Astronomía13. Climate actionSpace and Planetary ScienceAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Formation of X-ray emitting stationary shocks in magnetized protostellar jets

2016

X-ray observations of protostellar jets show evidence of strong shocks heating the plasma up to temperatures of a few million degrees. In some cases, the shocked features appear to be stationary. They are interpreted as shock diamonds. We aim at investigating the physics that guides the formation of X-ray emitting stationary shocks in protostellar jets, the role of the magnetic field in determining the location, stability, and detectability in X-rays of these shocks, and the physical properties of the shocked plasma. We performed a set of 2.5-dimensional magnetohydrodynamic numerical simulations modelling supersonic jets ramming into a magnetized medium and explored different configurations…

AstrofísicaMagnetohydrodynamics (MHD)010504 meteorology & atmospheric sciencesRadiative coolingAstrophysics::High Energy Astrophysical PhenomenaISM: structureFOS: Physical sciencesAstrophysics01 natural sciencesISM: magnetic field0103 physical sciencesShock diamondRadiative transfer010303 astronomy & astrophysicsISM: jets and outflowSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Jet (fluid)Astronomy and AstrophysicsPlasmaAstronomy and AstrophysicThermal conductionX-rays: ISMShock (mechanics)Magnetic fieldAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceStars: protostarAstrophysics - High Energy Astrophysical Phenomena
researchProduct

A Spatially Resolved Study of Hard X-Ray Emission in Kepler’s Supernova Remnant: Indications of Different Regimes of Particle Acceleration

2022

Abstract Synchrotron X-ray emission in young supernova remnants (SNRs) is a powerful diagnostic tool to study the population of high-energy electrons accelerated at the shock front and the acceleration process. We performed a spatially resolved spectral analysis of NuSTAR and XMM-Newton observations of the young Kepler’s SNR, aiming to study in detail its nonthermal emission in hard X-rays. We selected a set of regions all around the rim of the shell and extracted the corresponding spectra. The spectra were analyzed by adopting a model of synchrotron radiation in the loss-limited regime, to constrain the dependence of the cutoff energy of the synchrotron radiation on the shock velocity. We …

Settore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceSupernova remnants (1667)Astronomy and AstrophysicsCosmic ray sources (328)The Astrophysical Journal
researchProduct

The X‐ray emission of the supernova remnant W49B: indications of a jet‐like explosion

2007

We report on an XMM-Newton EPIC observation of the galactic supernova remnant W49B, which, on the basis of previous Chandra observations, has been supposed to be the first remnant of a gamma-ray burst discovered in our galaxy. We performed a spatially resolved spectral analysis, which revealed oversolar abundances of Si, S, Ar, Ca, and Fe. Moreover, a high overabundance of Ni is required in the bright central elongated region. Our results support a scenario where the remnant was generated by an asymmetric bipolar explosion where the eastern jet is hotter and more Fe-rich than the western one. An alternative interpretation which associates the X-ray emission with spherically symmetric ejecta…

PhysicsJet (fluid)Astrophysics::High Energy Astrophysical PhenomenaAstronomyAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsNear-Earth supernovaGalaxySupernovaNucleosynthesisX-ray burstsSupernova remnants X-ray sourceAstrophysics::Solar and Stellar AstrophysicsEjectaSupernova remnantHypernovaAstrophysics::Galaxy AstrophysicsAIP Conference Proceedings
researchProduct

Role of local absorption on the X-ray emission from MHD accretion shocks in classical T Tauri stars

2014

Accretion processes onto classical T Tauri stars (CTTSs) are believed to generate shocks at the stellar surface due to the impact of supersonic downflowing plasma. Although current models of accretion streams provide a plausible global picture of this process, several aspects are still unclear. For example, the observed X-ray luminosity in accretion shocks is, in general, well below the predicted value. A possible explanation discussed in the literature is in terms of significant absorption of the emission due to the thick surrounding medium. Here we consider a 2D MHD model describing an accretion stream propagating through the atmosphere of a CTTS and impacting onto its chromosphere. The m…

PhysicsAstrophysics::High Energy Astrophysical PhenomenaPhysicsQC1-999X-rayAstronomyAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAccretion (astrophysics)T Tauri starSettore FIS/05 - Astronomia E AstrofisicaAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsMagnetohydrodynamicsaccretion shocksAstrophysics::Galaxy Astrophysics
researchProduct

Origin of asymmetries in X-ray emission lines from the blast wave of the 2014 outburst of nova V745 Sco

2016

The symbiotic nova V745 Sco was observed in outburst on 2014 February 6. Its observations by the Chandra X-ray Observatory at days 16 and 17 have revealed a spectrum characterized by asymmetric and blue-shifted emission lines. Here we investigate the origin of these asymmetries through three-dimensional hydrodynamic simulations describing the outburst during the first 20 days of evolution. The model takes into account thermal conduction and radiative cooling and assumes a blast wave propagates through an equatorial density enhancement. From the simulations, we synthesize the X-ray emission and derive the spectra as they would be observed with Chandra. We find that both the blast wave and th…

Shock waveAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesSpectral line0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsEmission spectrumEjectaNovae010303 astronomy & astrophysicsSpectral line ratiosAstrophysics::Galaxy AstrophysicsBlast waveLine (formation)High Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsBinaries: symbioticWhite dwarfAstronomyAstronomy and AstrophysicsCircumstellar matterStars: individual: (V745 Sco)Astronomy and AstrophysicX-rays: binarieShock waveSpace and Planetary ScienceAstrophysics - High Energy Astrophysical PhenomenaCataclysmic variableMonthly Notices of the Royal Astronomical Society
researchProduct

ROLE OF EJECTA CLUMPING AND BACK-REACTION OF ACCELERATED COSMIC RAYS IN THE EVOLUTION OF TYPE Ia SUPERNOVA REMNANTS

2012

We investigate the role played by initial clumping of ejecta and by efficient acceleration of cosmic rays (CRs) in determining the density structure of the post-shock region of a Type Ia supernova remnant (SNR) through detailed 3D MHD modeling. Our model describes the expansion of a SNR through a magnetized interstellar medium (ISM), including the initial clumping of ejecta and the effects on shock dynamics due to back-reaction of accelerated CRs. The model predictions are compared to the observations of SN 1006. We found that the back-reaction of accelerated CRs alone cannot reproduce the observed separation between the forward shock (FS) and the contact discontinuity (CD) unless the energ…

High Energy Astrophysical Phenomena (astro-ph.HE)Shock wavePhysicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsCosmic rayAstrophysicsShock (mechanics)cosmic rays instabilities ISM: supernova remnants magnetohydrodynamics: MHD shock waves supernovae: individual: SN 1006Interstellar mediumSupernovaSpace and Planetary ScienceAstrophysics::Solar and Stellar AstrophysicsMagnetohydrodynamicsAstrophysics - High Energy Astrophysical PhenomenaEjectaSupernova remnantAstrophysics::Galaxy AstrophysicsThe Astrophysical Journal
researchProduct

Laboratory evidence for proton energization by collisionless shock surfing

2021

Charged particles can be accelerated to high energies by collisionless shock waves in astrophysical environments, such as supernova remnants. By interacting with the magnetized ambient medium, these shocks can transfer energy to particles. Despite increasing efforts in the characterization of these shocks from satellite measurements at Earth’s bow shock as well as powerful numerical simulations, the underlying acceleration mechanism or a combination thereof is still widely debated. Here we show that astrophysically relevant super-critical quasi-perpendicular magnetized collisionless shocks can be produced and characterized in the laboratory. We observe the characteristics of super-criticali…

Shock waveProtonAstrophysics::High Energy Astrophysical PhenomenaGeneral Physics and AstronomyFOS: Physical sciences01 natural sciencesAccelerationSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesBow shock (aerodynamics)010306 general physics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsMechanicsplasmasPhysics - Plasma PhysicsCharged particleComputer Science::Computers and Society[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]Magnetic fieldShock (mechanics)Plasma Physics (physics.plasm-ph)Supernova13. Climate actionPhysics::Space PhysicsPhysics::Accelerator Physics
researchProduct

X-rays from accretion shocks in classical T Tauri stars: 2D MHD modeling and the role of local absorption

2013

AbstractIn classical T Tauri stars (CTTS) strong shocks are formed where the accretion funnel impacts with the denser stellar chromosphere. Although current models of accretion provide a plausible global picture of this process, some fundamental aspects are still unclear: the observed X-ray luminosity in accretion shocks is order of magnitudes lower than predicted; the observed density and temperature structures of the hot post-shock region are puzzling and still unexplained by models.To address these issues we performed 2D MHD simulations describing an accretion stream impacting onto the chromosphere of a CTTS, exploring different configurations and strengths of the magnetic field. From th…

Accretion MHD Stars: pre-main sequence X-rays: starsPhysicsbusiness.product_categoryAstronomyAstronomy and AstrophysicsAstrophysicsViewing angleAccretion (astrophysics)Spectral lineMagnetic fieldT Tauri starSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary Sciencepre-main sequence X-rays: stars [Accretion MHD Stars]FunnelMagnetohydrodynamicsbusinessChromosphereProceedings of the International Astronomical Union
researchProduct

Unveiling the spatial structure of the overionized plasma in the supernova remnant W49B

2011

W49B is a mixed-morphology supernova remnant with thermal X-ray emission dominated by the ejecta. In this remnant, the presence of overionized plasma has been directly established, with information about its spatial structure. However, the physical origin of the overionized plasma in W49B has not yet been understood. We investigate this intriguing issue through a 2D hydrodynamic model that takes into account, for the first time, the mixing of ejecta with the inhomogeneous circumstellar and interstellar medium, the thermal conduction, the radiative losses from optically thin plasma, and the deviations from equilibrium of ionization induced by plasma dynamics. The model was set up on the basi…

PhysicsAstrophysics::High Energy Astrophysical PhenomenaContinuum (design consultancy)Astronomy and AstrophysicsAstrophysicsPlasmaThermal conductionInterstellar mediumPhysics::Plasma PhysicsSpace and Planetary ScienceIonizationRadiative transferEjectaSupernova remnantAstrophysics::Galaxy AstrophysicsMonthly Notices of the Royal Astronomical Society
researchProduct

Detailed study of SNR G306.3–0.9 using XMM-Newton and Chandra observations

2016

Aims. We aim to study the spatial distribution of the physical and chemical properties of the X-ray emitting plasma of the supernova remnant (SNR) G306.3-0.9 in detail to obtain constraints on its ionization stage, the progenitor supernova explosion, and the age of the remnant. Methods. We used combined data from XMM-Newton and Chandra observatories to study the X-ray morphology of G306.3-0.9 in detail. A spatially resolved spectral analysis was used to obtain physical and geometrical parameters of different regions of the remnant. Spitzer infrared observations, available in the archive, were also used to constrain the progenitor supernova and study the environment in which the remnant evol…

Ciencias AstronómicasInfraredCiencias FísicasAstrophysics::High Energy Astrophysical PhenomenaISM [Infrared]FOS: Physical sciencesthermal [radiation mechanism]individual objects: SNR G306.3–0.9 [ISM]AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSpectral line//purl.org/becyt/ford/1 [https]ISM: individual objects: SNR G306.3IonizationISM [X-ray]0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsISM [X-rays]Radio continuum: ISMEjectaSupernova remnant010303 astronomy & astrophysicsISM: supernova remnantAstrophysics::Galaxy AstrophysicsISM: supernova remnantsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Infrared: ISM010308 nuclear & particles physicssupernova remnants [ISM]Astronomy and AstrophysicsPlasma//purl.org/becyt/ford/1.3 [https]Astronomy and AstrophysicISM: individual objects: SNR G306.3–0.9ISM [Radio continuum]Radiation mechanisms: thermalX-rays: ISMindividual objects: G306.3-0.9 [ISM]Interstellar mediumAstronomíaSupernovathermal [Radiation mechanisms]Space and Planetary ScienceISM; ISM: individual objects: SNR G306.3; ISM: supernova remnants; Radiation mechanisms: thermal; Radio continuum: ISM; X-rays: ISM; Astronomy and Astrophysics; Space and Planetary Science [0.9; Infrared]0.9Astrophysics - High Energy Astrophysical PhenomenaCIENCIAS NATURALES Y EXACTAS
researchProduct

Linking gamma-ray spectra of supernova remnants to the cosmic ray injection properties in the aftermath of supernovae

2017

The acceleration times of the highest-energy particles which emit gamma-rays in young and middle-age SNRs are comparable with SNR age. If the number of particles starting acceleration was varying during early times after the supernova explosion then this variation should be reflected in the shape of the gamma-ray spectrum. We use the solution of the non-stationary equation for particle acceleration in order to analyze this effect. As a test case, we apply our method to describe gamma-rays from IC443. As a proxy of the IC443 parent supernova we consider SN1987A. First, we infer the time dependence of injection efficiency from evolution of the radio spectral index in SN1987A. Then, we use the…

Particle numberAstrophysics::High Energy Astrophysical PhenomenaSupernovae: generalFOS: Physical sciencesGamma ray spectraCosmic rayAstrophysics01 natural sciences0103 physical sciences010303 astronomy & astrophysicsISM: supernova remnantAstrophysics::Galaxy AstrophysicsGamma rays: ISMPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Spectral index010308 nuclear & particles physicsGamma raySpectral densityAstronomy and AstrophysicsAstronomy and AstrophysicCosmic rayParticle accelerationSupernovaSpace and Planetary ScienceAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Probing the effects of hadronic acceleration at the SN 1006 shock front

2014

AbstractSupernova remnant shocks are strong candidates for being the source of energetic cosmic rays and hadron acceleration is expected to increase the shock compression ratio, providing higher post-shock densities. We exploited the deep observations of the XMM-Newton Large Program on SN 1006 to verify this prediction. Spatially resolved spectral analysis led us to detect X-ray emission from the shocked ambient medium in SN 1006 and to find that its density significantly increases in regions where particle acceleration is efficient. Our results provide evidence for the effects of acceleration of cosmic ray hadrons on the post-shock plasma in supernova remnants.

PhysicsAstrophysics::High Energy Astrophysical PhenomenaAstronomy and AstrophysicsCosmic rayPlasmaAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsX-rays: ISMShock (mechanics)Particle accelerationSupernovaAccelerationSpace and Planetary ScienceISM: individual object: SN 1006Pair-instability supernovaSupernova remnantISM: supernova remnantAstrophysics::Galaxy AstrophysicsProceedings of the International Astronomical Union
researchProduct

Modeling the mixed-morphology supernova remnant IC 443. Origin of its complex morphology and X-ray emission

2020

The morphology and the distribution of material observed in SNRs reflect the interaction of the SN blast wave with the ambient environment, the physical processes associated with the SN explosion and the internal structure of the progenitor star. IC 443 is a MM SNR located in a quite complex environment: it interacts with a molecular cloud in the NW and SE areas and with an atomic cloud in the NE. In this work we aim at investigating the origin of the complex morphology and multi-thermal X-ray emission observed in SNR IC 443, through the study of the effect of the inhomogeneous ambient medium in shaping its observed structure, and the exploration of the main parameters characterizing the re…

ISM: individual objects: IC 443Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesContext (language use)Astrophysics01 natural sciencesPulsar wind nebulaSpectral lineSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesEjectaSupernova remnant010303 astronomy & astrophysicsBlast waveAstrophysics::Galaxy AstrophysicsISM: supernova remnantsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsMolecular cloudAstronomy and AstrophysicsX-rays: ISMSupernovaSpace and Planetary ScienceHydrodynamicsPulsars: individual: CXOU J061705.3+222127Astrophysics - High Energy Astrophysical Phenomena
researchProduct

Radio polarization maps of shell-type SNRs II. Sedov models with evolution of turbulent magnetic field

2017

Polarized radio emission has been mapped with great detail in several Galactic supernova remnants (SNRs), but has not yet been exploited to the extent it deserves. We have developed a method to model maps of the Stokes parameters for shell-like SNRs during their Sedov evolution phase. At first, 3-dimensional structure of a SNR has been computed, by modeling the distribution of the magnetohydrodynamic parameters and of the accelerated particles. The generation and dissipation of the turbulent component of magnetic field everywhere in SNR are also considered taking into account its interaction with accelerated particles. Then, in order to model the emission, we have used a generalization of t…

Shock waveRadiation mechanisms: non-thermalAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayAstrophysics01 natural sciencessymbols.namesake0103 physical sciencesFaraday effectStokes parameters010306 general physics010303 astronomy & astrophysicsISM: supernova remnantAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Astronomy and AstrophysicsAstronomy and AstrophysicDissipationAcceleration of particlePolarization (waves)Cosmic rayMagnetic fieldSupernovaShock waveSpace and Planetary SciencesymbolsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Mass Accretion Impacts in Classical T Tauri Stars: A Multi-disciplinary Approach

2019

Accretion of matter is a process that plays a central role in the physics of young stellar objects. The analysis of the structure by which matter settles on the star can unveil key information about the process of star formation by providing details on mass accretion rates, stellar magnetic field configurations, possible effects of accretion on the stellar coronal activity, etc. Here we review some of the achievements obtained by our group by exploiting a multi-disciplinary approach based on the analysis of multi-dimensional magnetohydrodynamic simulations, multi-wavelength observations, and laboratory experiments of accretion impacts occurring onto the surface of classical T Tauri stars (C…

PhysicsMulti disciplinaryStar formationYoung stellar objectAccretion young stellar objects Magnetohydrodynamics observationsStellar magnetic fieldAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsStar (graph theory)Accretion (astrophysics)T Tauri starSettore FIS/05 - Astronomia E AstrofisicaAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics::Galaxy Astrophysics
researchProduct

Shock-cloud interaction in the Vela SNR II. Hydrodynamic model

2006

In the framework of the study of the X-ray and optical emission in supernova remnants we focus on an isolated X-ray knot in the northern rim of the Vela SNR (Vela FilD), whose X-ray emission has been studied and discussed in Paper I. We aim at understanding the physical origin of the X-ray and optical emission in FilD, at understanding the role of the different physical processes at work, and at obtaining a key for the interpretation of future X-ray observations of SNRs. To this end we have pursued an accurate ``forward'' modeling of the interaction of the Vela SNR shock with an ISM cloud. We perform hydrodynamic simulations and we directly compare the observables synthesized from the simul…

PhysicsAstrophysics::High Energy Astrophysical PhenomenacloudsISMAstrophysics (astro-ph)FOS: Physical sciencesAstronomy and AstrophysicsObservableAstrophysicsThermal conductionVelaAstrophysicsSpectral lineindividual objectVela SNRISMShock wavesSupernovakinematics and dynamicsISMsupernova remnantKnot (unit)Space and Planetary ScienceThermalIntercloudHydrodynamicsISMAstrophysics::Galaxy Astrophysics
researchProduct

Matter Mixing in Aspherical Core-collapse Supernovae: Three-dimensional Simulations with Single Star and Binary Merger Progenitor Models for SN 1987A

2019

We perform three-dimensional hydrodynamic simulations of aspherical core-collapse supernovae focusing on the matter mixing in SN 1987A. The impacts of four progenitor (pre-supernova) models and parameterized aspherical explosions are investigated. The four pre-supernova models include a blue supergiant (BSG) model based on a slow merger scenario developed recently for the progenitor of SN 1987A (Urushibata et al. 2018). The others are a BSG model based on a single star evolution and two red supergiant (RSG) models. Among the investigated explosion (simulation) models, a model with the binary merger progenitor model and with an asymmetric bipolar-like explosion, which invokes a jetlike explo…

010504 meteorology & atmospheric sciencesSupergiant starAstrophysics::High Energy Astrophysical PhenomenaBinary numberchemistry.chemical_elementNeutron starFOS: Physical sciencesHydrodynamical simulationAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesCore-collapse supernovaeAstrophysics::Solar and Stellar AstrophysicsRed supergiant010303 astronomy & astrophysicsMixing (physics)HeliumStellar evolutionary modelSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesLine (formation)PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Astronomy and AstrophysicsSupernova dynamicSupernovaNeutron starchemistryAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceExplosive nucleosynthesisSupergiantAstrophysics - High Energy Astrophysical Phenomena
researchProduct

X-ray emitting structures in the Vela SNR: ejecta anisotropies and progenitor stellar wind residuals

2021

The Vela supernova remnant (SNR) shows several ejecta fragments protruding beyond the forward shock (shrapnel). Recent studies have revealed high Si abundance in two shrapnel (A and G), located in opposite directions with respect to the SNR center. This suggests the possible existence of a Si-rich jet-counterjet structure. We analyzed an XMM-Newton observation of a bright clump, behind shrapnel G, which lies along the direction connecting A and G. The aim is to study the physical and chemical properties of this clump to ascertain whether it is part of this putative jet-like structure. We produced background-corrected and adaptively-smoothed count-rate images and median photon energy maps, a…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesContext (language use)AstrophysicsISM [X-RAYS]Photon energyVela01 natural sciences//purl.org/becyt/ford/1 [https]Protein filamentSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesROSATAstrophysics::Solar and Stellar AstrophysicsSUPERNOVA REMNANTS [ISM]Ejecta010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsISM: supernova remnantsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsVela Supernova Remnant010308 nuclear & particles physicsAstronomy and Astrophysics//purl.org/becyt/ford/1.3 [https]X-rays: ISMSupernovaISM: individual objects: Vela SNRSpace and Planetary ScienceINDIVIDUAL OBJECTS: VELA SNR [ISM]Astrophysics - High Energy Astrophysical PhenomenaAstronomy & Astrophysics
researchProduct

Spatial identification of the overionized plasma in W49B

2010

Recent Suzaku X-ray observations of the ejecta-dominated supernova remnant W49B have shown that in the global spectrum there is a clear indication for the presence of overionized plasma whose physical origin is still under debate. In order to ascertain the physical origin of such a rapidly cooling plasma, we focus on the study of its spatial localization within the X-ray emitting ejecta. We confirm the presence of a saw-edged excess (interpreted as a strong radiative recombination continuum) in the global spectrum above 8 keV, emerging above the ionization-equilibrium model. We produce a hardness ratio map to determine where the plasma is overionized and we perform a spectral analysis of th…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsHardness ratioAstrophysics::High Energy Astrophysical PhenomenaInterstellar cloudFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsPlasmaX-rays: ISM ISM: supernova remnants ISM: individual object: W49BSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceSpontaneous emissionSpectral analysisSpatial localizationAstrophysics - High Energy Astrophysical PhenomenaEjectaSupernova remnantISM ISM: supernova remnants ISM: individual object: W49B [X-rays]Astrophysics::Galaxy Astrophysics
researchProduct

Redshifted X-rays from the material accreting onto TW Hya: evidence of a low-latitude accretion spot

2017

High resolution spectroscopy, providing constraints on plasma motions and temperatures, is a powerful means to investigate the structure of accretion streams in CTTS. In particular, the accretion shock region, where the accreting material is heated to temperatures of a few MK as it continues its inward bulk motion, can be probed by X-ray spectroscopy. To attempt to detect for the first time the motion of this X-ray-emitting post-shock material, we searched for a Doppler shift in the deep Chandra/HETGS observation of the CTTS TW Hya. This test should unveil the nature of this X-ray emitting plasma component in CTTS, and constrain the accretion stream geometry. We searched for a Doppler shift…

AccretionTechniques: spectroscopicFOS: Physical sciencesAstrophysics01 natural sciencesSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesTW HydraeX-rays: starEmission spectrumSpectroscopy010303 astronomy & astrophysicsStars: variables: T TauriSolar and Stellar Astrophysics (astro-ph.SR)PhysicsPhotosphereLine-of-sight010308 nuclear & particles physicsHerbig Ae/BeAstronomy and AstrophysicsAstronomy and AstrophysicRedshiftAccretion (astrophysics)T Tauri starAstrophysics - Solar and Stellar AstrophysicsAccretion diskSpace and Planetary ScienceStars: pre-main sequence
researchProduct

Spatial distribution of X-ray emitting ejecta in Tychos SNR: indications of shocked Titanium

2015

Young supernova remnants show a characteristic ejecta-dominated X-ray emission that allows us to probe the products of the explosive nucleosynthesis processes and to ascertain important information about the physics of the supernova explosions. Hard X-ray observations have recently revealed the radioactive decay lines of 44Ti at ~67.9 keV and ~78.4 keV in the Tycho's SNR. We here analyze the set of XMM-Newton archive observations of the Tycho's SNR. We produce equivalent width maps of the Fe K and Ca XIX emission lines and find indications for a stratification of the abundances of these elements and significant anisotropies. We then perform a spatially resolved spectral analysis by identify…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsSpectral lineISM: individual objects: Tycho's SNR ISM: supernova remnants X-rays: ISMSupernovaSpace and Planetary ScienceNucleosynthesisAstrophysics::Solar and Stellar AstrophysicsEmission spectrumAstrophysics - High Energy Astrophysical PhenomenaEjectaAnisotropyEquivalent widthRadioactive decayAstrophysics::Galaxy Astrophysics
researchProduct

A stellar flare-coronal mass ejection event revealed by X-ray plasma motions

2019

Coronal mass ejections (CMEs), often associated with flares, are the most powerful magnetic phenomena occurring on the Sun. Stars show magnetic activity levels up to 10^4 times higher, and CME effects on stellar physics and circumstellar environments are predicted to be significant. However, stellar CMEs remain observationally unexplored. Using time-resolved high-resolution X-ray spectroscopy of a stellar flare on the active star HR 9024 observed with Chandra/HETGS, we distinctly detected Doppler shifts in S XVI, Si XIV, and Mg XII lines that indicate upward and downward motions of hot plasmas (~10-25 MK) within the flaring loop, with velocity v~100-400 km/s, in agreement with a model of fl…

Angular momentumX-ray Astronomy010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaStars: flareFOS: Physical sciencesAstrophysicsKinetic energy01 natural scienceslaw.inventionSpitzer Space Telescopelaw0103 physical sciencesCoronal mass ejectionAstrophysics::Solar and Stellar AstrophysicsStars: coronae010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesLine (formation)PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Astronomy and AstrophysicsStarsAstrophysics - Solar and Stellar AstrophysicsStellar physicsPhysics::Space PhysicsStars: CMEAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaFlare
researchProduct

Post-adiabatic supernova remnants in an interstellar magnetic field: oblique shocks and non-uniform environment

2018

Monthly notices of the Royal Astronomical Society 479(3), 4253 - 4270 (2018). doi:10.1093/mnras/sty1750

Shock waveshock wave010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayAstrophysics01 natural sciencesISM: magnetic field0103 physical sciencesRadiative transferAdiabatic process010303 astronomy & astrophysicsISM: supernova remnantAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicssupernova remnants [ISM]magnetic fields [ISM]Astronomy and Astrophysicsshock wavesAstronomy and Astrophysic520Magnetic fieldSupernovaSpace and Planetary Scienceddc:520Oblique shockMagnetohydrodynamicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Three-dimensional Simulations from Supernovae to Their Supernova Remnants: The Dynamical and Chemical Evolution of Supernova 1987A

2020

Chemical evolutionPhysicsSupernovaAstrophysicsProceedings of the 15th International Symposium on Origin of Matter and Evolution of Galaxies (OMEG15)
researchProduct

Detection of X-ray flares from AX J1714.1-3912, the unidentified source near RX J1713.7-3946

2018

Molecular clouds are predicted to emit nonthermal X-rays when they are close to particle-accelerating supernova remnants (SNRs), and the hard X-ray source AX J1714.1-3912, near the SNR RX J1713.7-3946, has long been considered a candidate for diffuse nonthermal emission associated with cosmic rays diffusing from the remnant to a closeby molecular cloud. We aim at ascertaining the nature of this source by analyzing two dedicated X-ray observations performed with Suzaku and Chandra. We extracted images from the data in various energy bands, spectra, and light curves and studied the long-term evolution of the X-ray emission on the basis of the ~4.5 yr time separation between the two observatio…

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayContext (language use)Astrophysics01 natural sciencesSpectral lineX-rays: binariesSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesX-rays: bursts010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsISM: supernova remnants0105 earth and related environmental sciencesHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsMolecular cloudAstronomy and AstrophysicsLight curveX-rays: ISMSupernovaOrders of magnitude (time)Space and Planetary ScienceSupergiantAstrophysics - High Energy Astrophysical Phenomena
researchProduct

XMM-Newton evidence of shocked ISM in SN 1006: indications of hadronic acceleration

2012

Shock fronts in young supernova remnants are the best candidates for being sites of cosmic ray acceleration up to a few PeV, though conclusive experimental evidence is still lacking. Hadron acceleration is expected to increase the shock compression ratio, providing higher postshock densities, but X-ray emission from shocked ambient medium has not firmly been detected yet in remnants where particle acceleration is at work. We exploited the deep observations of the XMM-Newton Large Program on SN 1006 to verify this prediction. We performed spatially resolved spectral analysis of a set of regions covering the southeastern rim of SN 1006. We studied the spatial distribution of the thermodynamic…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)ISM ISM: supernova remnants ISM: individual objects: SN 1006 [X-rays]Astrophysics::High Energy Astrophysical PhenomenaHadronFOS: Physical sciencesAstronomy and AstrophysicsCosmic rayAstrophysicsPlasmaShock (mechanics)Particle accelerationInterstellar mediumSupernovaAccelerationSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceX-rays: ISM ISM: supernova remnants ISM: individual objects: SN 1006Astrophysics - High Energy Astrophysical PhenomenaAstrophysics::Galaxy AstrophysicsAstronomy & Astrophysics
researchProduct

Spatially resolved X-ray study of supernova remnants that host magnetars: Implication of their fossil field origin

2019

Magnetars are regarded as the most magnetized neutron stars in the Universe. Aiming to unveil what kinds of stars and supernovae can create magnetars, we have performed a state-of-the-art spatially resolved spectroscopic X-ray study of the supernova remnants (SNRs) Kes 73, RCW 103, and N49, which host magnetars 1E 1841-045, 1E 161348-5055, and SGR 0526-66, respectively. The three SNRs are O- and Ne-enhanced and are evolving in the interstellar medium with densities of >1--2 cm$^{-3}$. The metal composition and dense environment indicate that the progenitor stars are not very massive. The progenitor masses of the three magnetars are constrained to be < 20 Msun (11--15 Msun for Kes 73, …

Nuclear reactionAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsMagnetar7. Clean energy01 natural sciencesSettore FIS/05 - Astronomia E AstrofisicaPulsarNucleosynthesispulsars: general0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010306 general physics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)ISM: supernova remnantPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Astronomy and AstrophysicsInterstellar mediumNeutron starSupernovaStarsAstrophysics - Solar and Stellar Astrophysicsnuclear reactions nucleosynthesis abundance13. Climate actionSpace and Planetary Sciencestars: magnetarAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Modeling particle acceleration and non-thermal emission in supernova remnants

2021

According to the most popular model for the origin of cosmic rays (CRs), supernova remnants (SNRs) are the site where CRs are accelerated. Observations across the electromagnetic spectrum support this picture through the detection of non-thermal emission that is compatible with being synchrotron or inverse Compton radiation from high energy electrons, or pion decay due to proton-proton interactions. These observations of growing quantity and quality promise to unveil many aspects of CRs acceleration and require more and more accurate tools for their interpretation. Here, we show how multi-dimensional MHD models of SNRs, including the effects on shock dynamics due to back-reaction of acceler…

Shock waveMagnetohydrodynamics (MHD)Radiation mechanisms: non-thermalElectromagnetic spectrumAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayAstrophysicsElectronRadiation01 natural sciencesShock wavesAcceleration0103 physical sciencesCosmic rays010303 astronomy & astrophysicsInstrumentationAstrophysics::Galaxy AstrophysicsISM: supernova remnantsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsAstronomy and AstrophysicsParticle accelerationSupernovaSpace and Planetary SciencePhysics::Accelerator PhysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Magnetohydrodynamic Modeling of the Accretion Shocks in Classical T Tauri Stars: The Role of Local Absorption in the X-Ray Emission

2014

We investigate the properties of X-ray emission from accretion shocks in classical T Tauri stars (CTTSs), generated where the infalling material impacts the stellar surface. Both observations and models of the accretion process reveal several aspects that are still unclear: the observed X-ray luminosity in accretion shocks is below the predicted value, and the density versus temperature structure of the shocked plasma, with increasing densities at higher temperature, deduced from the observations, is at odds with that proposed in the current picture of accretion shocks. To address these open issues we investigate whether a correct treatment of the local absorption by the surrounding medium …

PhysicsShock wave[PHYS]Physics [physics]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and Astrophysicsaccretion accretion disks magnetohydrodynamics: MHD shock waves stars: pre-main sequence X-rays: starsAstrophysicsPlasmaAstrophysics::Cosmology and Extragalactic AstrophysicsAccretion (astrophysics)Spectral lineLuminosityT Tauri starSettore FIS/05 - Astronomia E AstrofisicaAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsAbsorption (electromagnetic radiation)[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]ChromosphereSolar and Stellar Astrophysics (astro-ph.SR)ComputingMilieux_MISCELLANEOUSAstrophysics::Galaxy Astrophysics
researchProduct

Unveiling pure-metal ejecta X-ray emission in supernova remnants through their radiative recombination continuum

2020

Spectral analysis of X-ray emission from ejecta in supernova remnants (SNRs) is hampered by the low spectral resolution of CCD cameras, which creates a degeneracy between the best-fit values of abundances and emission measure. The combined contribution of shocked ambient medium and ejecta to the X-ray emission complicates the determination of the ejecta mass and chemical composition, leading to big uncertainties in mass estimates and it can introduce a bias in the comparison between the observed ejecta composition and the yields predicted by explosive nucleosynthesis. We explore the capabilities of present and future spectral instruments with the aim of identifying a spectral feature which …

High Energy Astrophysical Phenomena (astro-ph.HE)Physics010504 meteorology & atmospheric sciencesSpectrometerAstrophysics::High Energy Astrophysical PhenomenaBremsstrahlungFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics01 natural sciencesSpectral lineSupernovaSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceNucleosynthesis0103 physical sciencesISM: abundances ISM: individual objects: Cas A ISM: supernova remnants X-rays: general X-rays: individuals: Cas AAstrophysics::Solar and Stellar AstrophysicsSpontaneous emissionSpectral resolutionAstrophysics - High Energy Astrophysical PhenomenaEjecta010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciences
researchProduct

Structure of X-ray emitting jets close to the launching site: from embedded to disk-bearing sources

2018

Several observations of stellar jets show evidence of X-ray emitting shocks close to the launching site. In some cases, the shocked features appear to be stationary, also for YSOs at different stages of evolution. We study the case of HH 154, the jet originating from the embedded binary Class 0/I protostar IRS 5, and the case of the jet associated to DG Tau, a more evolved Class II disk-bearing source or Classical T Tauri star (CTTS), both located in the Taurus star-forming region. We aim at investigating the effect of perturbations in X-ray emitting stationary shocks in stellar jets; the stability and detectability in X-rays of these shocks; and explore the differences in jets from Class 0…

PhysicsJet (fluid)010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaYoung stellar objectFOS: Physical sciencesAstronomy and AstrophysicsContext (language use)AstrophysicsParameter space01 natural sciencesLuminosityShock (mechanics)T Tauri starAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary Science0103 physical sciencesProtostar010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysics0105 earth and related environmental sciences
researchProduct

On the Origin of the X-Ray Emission in Protostellar Jets Close to the Launching Site

2019

Observations of stellar jets show evidence of X-ray emitting shocks close to the launching site. In some cases, the shocked features appear to be stationary (e.g. HH 154 and DG Tau). We aim at investigating the origin of X-ray emission and the effect of perturbations in X-ray emitting stationary shocks in stellar jets. We performed a set of 2.5-dimensional MHD numerical simulations modelling supersonic pulsed jets ramming into a magnetized medium, exploring different parameters for the model. We consider two cases: a jet less dense than the ambient medium (HH 154), and a jet denser than the ambient (DG Tau). In both cases, we found that the jet is collimated by the magnetic field forming a …

PhysicsJet (fluid)Shock (fluid dynamics)Astrophysics::High Energy Astrophysical PhenomenaX-raySupersonic speedAstrophysicsMagnetohydrodynamicsAstrophysics::Galaxy AstrophysicsCollimated lightMagnetic field
researchProduct

X-RAY EMISSION FROM PROTOSTELLAR JET HH 154: THE FIRST EVIDENCE OF A DIAMOND SHOCK?

2011

X-ray emission from about ten protostellar jets has been discovered and it appears as a feature common to the most energetic jets. Although X-ray emission seems to originate from shocks internal to jets, the mechanism forming these shocks remains controversial. One of the best studied X-ray jet is HH 154 that has been observed by Chandra over a time base of about 10 years. We analyze the Chandra observations of HH 154 by investigating the evolution of its X-ray source. We show that the X-ray emission consists of a bright stationary component and a faint elongated component. We interpret the observations by developing a hydrodynamic model describing a protostellar jet originating from a nozz…

PhysicsJet (fluid)Astrophysics::High Energy Astrophysical PhenomenaNozzleFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsThermal conductionjets and outflows X-rays: ISM [hydrodynamics Herbig-Haro objects ISM]LuminosityShock (mechanics)Starshydrodynamics Herbig-Haro objects ISM: jets and outflows X-rays: ISMAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceRadiative transferHerbig–Haro objectSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsThe Astrophysical Journal
researchProduct

Investigating the Structure of Vela X

2018

Vela X is the prototypical example of a pulsar wind nebula whose morphology and detailed structure have been affected by the interaction with the reverse shock of its host supernova remnant. The resulting complex of filamentary structure and mixed-in ejecta embedded in a nebula that is offset from the pulsar provides the best example we have of this middle-age state that characterizes a significant fraction of composite SNRs, and perhaps all of the large-diameter PWNe seen as TeV sources. Here we report on an XMM-Newton Large Project study of Vela X, supplemented by additional Chandra observations. Through broad spectral modeling as well as detailed spectral investigations of discrete emiss…

shock waveDensity gradientAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsVela01 natural sciencesPulsar wind nebulaPulsar0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010306 general physicsEjectaSupernova remnant010303 astronomy & astrophysicsacceleration of particleISM: supernova remnantAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)NebulaAstronomy and AstrophysicsAstronomy and AstrophysicISM: individual objects (Vela X)Space and Planetary ScienceAstrophysics - High Energy Astrophysical PhenomenaEquivalent width
researchProduct

Hydrodynamic modelling of ejecta shrapnel in the Vela supernova remnant

2013

Many supernova remnants (SNRs) are characterized by a knotty ejecta structure. The Vela SNR is an excellent example of remnant in which detached clumps of ejecta are visible as X-ray emitting bullets that have been observed and studied in great detail. We aim at modelling the evolution of ejecta shrapnel in the Vela SNR, investigating the role of their initial parameters (position and density) and addressing the effects of thermal conduction and radiative losses. We performed a set of 2-D hydrodynamic simulations describing the evolution of a density inhomogeneity in the ejecta profile. We explored different initial setups. We found that the final position of the shrapnel is very sensitive …

PhysicsShock waveHigh Energy Astrophysical Phenomena (astro-ph.HE)Vela Supernova RemnantAstrophysics::High Energy Astrophysical Phenomenanumerical ISM: individual objects: Vela SNR ISM: kinematics and dynamics ISM: supernova remnants [hydrodynamics shock waves methods]AstronomyFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsThermal conductionVelahydrodynamics shock waves methods: numerical ISM: individual objects: Vela SNR ISM: kinematics and dynamics ISM: supernova remnantsSupernovaSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceRadiative transferAstrophysics::Solar and Stellar AstrophysicsDensity contrastEjectaAstrophysics - High Energy Astrophysical PhenomenaAstrophysics::Galaxy Astrophysics
researchProduct

Hydrodynamic simulations unravel the progenitor-supernova-remnant connection in SN 1987A

2019

(Abridged) We aim at linking the dynamical and radiative properties of the remnant of SN 1987A to the geometrical and physical characteristics of the parent aspherical SN explosion and to the internal structure of its progenitor star. We performed 3D hydrodynamic simulations which describe the long-term evolution of SN 1987A from the onset of the SN to the full-fledged remnant at the age of 50 years, accounting for the pre-SN structure of the progenitor star. The simulations include all physical processes relevant for the complex phases of SN evolution and for the interaction of the SNR with the highly inhomogeneous ambient environment around SN 1987A. From the simulations, we synthesize ob…

High Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEPhysics010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesRedshiftStarsSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary Science0103 physical sciencesRadiative transferAstrophysics::Solar and Stellar AstrophysicsEmission spectrumSupergiantAstrophysics - High Energy Astrophysical PhenomenaAnisotropyEjectaSupernova remnant010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics
researchProduct

Indication of a Pulsar Wind Nebula in the Hard X-Ray Emission from SN 1987A

2021

Since the day of its explosion, SN 1987A (SN87A) was closely monitored with the aim to study its evolution and to detect its central compact relic. The detection of neutrinos from the supernova strongly supports the formation of a neutron star (NS). However, the constant and fruitless search for this object has led to different hypotheses on its nature. Up to date, the detection in the ALMA data of a feature somehow compatible with the emission arising from a proto Pulsar Wind Nebula (PWN) is the only hint of the existence of such elusive compact object. Here we tackle this 33-years old issue by analyzing archived observations of SN87A performed Chandra and NuSTAR in different years. We fir…

010504 meteorology & atmospheric sciencesSupernova remnantsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesSynchrotron radiationAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsCompact starX-ray sources01 natural sciencesPulsar wind nebulaNeutron starsX-ray astronomy0103 physical sciencesPlasma astrophysicsEjectaX-ray point sources010303 astronomy & astrophysicsCompact objectsX-ray observatoriesShocksAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsX-ray astronomyAstronomy and AstrophysicsNeutron starSupernovaInterstellar synchrotron emissionSpace and Planetary ScienceNeutrinoAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Supernova 1987A: a Template to Link Supernovae to their Remnants

2015

The emission of supernova remnants reflects the properties of both the progenitor supernovae and the surrounding environment. The complex morphology of the remnants, however, hampers the disentanglement of the two contributions. Here we aim at identifying the imprint of SN 1987A on the X-ray emission of its remnant and at constraining the structure of the environment surrounding the supernova. We performed high-resolution hydrodynamic simulations describing SN 1987A soon after the core-collapse and the following three-dimensional expansion of its remnant between days 1 and 15000 after the supernova. We demonstrated that the physical model reproducing the main observables of SN 1987A during …

Shock wavesupernovae: individual (SN 1987A)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsPower lawSpectral lineGravitational collapseAstrophysics::Solar and Stellar AstrophysicsHydrodynamics instabilities ISM: supernova remnants shock waves supernovae: individual (SN 1987A) X-rays: ISM.EjectaAstrophysics::Galaxy AstrophysicsISM: supernova remnantsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsNebulaAstronomy and AstrophysicsObservableshock wavesX-rays: ISMhydrodynamics instabilities ISM: supernova remnants shock waves supernovae: individual: SN 1987A X-rays: ISMSupernovainstabilitiesSpace and Planetary ScienceHydrodynamicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

The northwestern ejecta knot in SN 1006

2012

Aims: We want to probe the physics of fast collision-less shocks in supernova remnants. In particular, we are interested in the non-equilibration of temperatures and particle acceleration. Specifically, we aim to measure the oxygen temperature with regards to the electron temperature. In addition, we search for synchrotron emission in the northwestern thermal rim. Methods: This study is part of a dedicated deep observational project of SN 1006 using XMM-Newton, which provides us with currently the best resolution spectra of the bright northwestern oxygen knot. We aim to use the reflection grating spectrometer to measure the thermal broadening of the O vii line triplet by convolving the emis…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesSynchrotron radiationAstrophysicsISM: abundancesSpectral linelaw.inventionlawEjectaISM: supernova remnantAstrophysics::Galaxy AstrophysicsISM: supernova remnantsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAstronomy and AstrophysicsAstronomy and AstrophysicISM: abundanceX-rays: ISMSynchrotronMagnetic fieldParticle accelerationSupernovaSpace and Planetary ScienceElectron temperature[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - High Energy Astrophysical Phenomena
researchProduct

A physical interpretation of the jet-like X-ray emission from supernova remnant W49B

2007

In the framework of the study of supernova remnants and their complex interaction with the interstellar medium and the circumstellar material, we focus on the galactic supernova remnant W49B. Its morphology exhibits an X-ray bright elongated nebula, terminated on its eastern end by a sharp perpendicular structure aligned with the radio shell. The X-ray spectrum of W49B is characterized by strong K emission lines from Si, S, Ar, Ca, and Fe. There is a variation of the temperature in the remnant with the highest temperature found in the eastern side and the lowest one in the western side. The analysis of the recent observations of W49B indicates that the remnant may be the result of an asymme…

PhysicsAtmospheric ScienceNebulaAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)Aerospace EngineeringAstronomyFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsNear-Earth supernovaAstrophysicsInterstellar mediumSupernovaGeophysicsSpace and Planetary ScienceGeneral Earth and Planetary SciencesAstrophysics::Solar and Stellar AstrophysicsEmission spectrumEjectaSupernova remnantHypernovaAstrophysics::Galaxy Astrophysics
researchProduct

Three-dimensional modeling from the onset of the SN to the full-fledged SNR. Role of an initial ejecta anisotropy on matter mixing

2020

Context. The manifold phases in the evolution of a core-collapse (CC) supernova (SN) play an important role in determining the physical properties and morphology of the resulting supernova remnant (SNR). Thus, the complex morphology of SNRs is expected to reflect possible asymmetries and structures developed during and soon after the SN explosion. Aims. The aim of this work is to bridge the gap between CC SNe and their remnants by investigating how post-explosion anisotropies in the ejecta influence the structure and chemical properties of the remnant at later times. Methods. We performed three-dimensional magneto-hydrodynamical simulations starting soon after the SN event and following the…

Shock wavePhysics010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaStratification (water)Instabilities ISM: supernova remnants Magnetohydrodynamics (MHD) Shock wavesAstronomy and AstrophysicsContext (language use)Astrophysics01 natural sciencesSupernovaSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary Science0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsRed supergiantAnisotropyEjectaSupernova remnant010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics
researchProduct

Erratum: ‘XMM-newton large program on SN1006 - II: Thermal emission’ (2016, MNRAS, 462, 158)

2020

PhysicsSpace and Planetary ScienceAstronomy and AstrophysicsAstrophysicsThermal emissionMonthly Notices of the Royal Astronomical Society
researchProduct

XMM-Newton large programme on SN1006 - II. Thermal emission

2016

Based on the XMM-Newton large program on SN1006 and our newly developed spatially resolved spectroscopy tools (Paper~I), we study the thermal emission from ISM and ejecta of SN1006 by analyzing the spectra extracted from 583 tessellated regions dominated by thermal emission. With some key improvements in spectral analysis as compared to Paper~I, we obtain much better spectral fitting results with less residuals. The spatial distributions of the thermal and ionization states of the ISM and ejecta show different features, which are consistent with a scenario that the ISM (ejecta) is heated and ionized by the forward (reverse) shock propagating outward (inward). Different elements have differe…

Shock wave010504 meteorology & atmospheric sciences[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]FOS: Physical sciencesCosmic rayAstrophysicsMethods: Data analysi01 natural sciencesSpectral linecosmic raysIonization0103 physical sciencesEjectaSupernova remnant010303 astronomy & astrophysics0105 earth and related environmental sciencesLine (formation)ISM: supernova remnantsacceleration of particlesHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAstronomyAstronomy and Astrophysicsshock wavesAstronomy and AstrophysicAcceleration of particlemethods: data analysisCosmic rayX-rays: ISMInterstellar mediumISM: Supernova remnant13. Climate actionShock waveSpace and Planetary ScienceAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Supernova remnants; Methods: Data analysis; Shock waves; X-rays: ISM; Astronomy and Astrophysics; Space and Planetary Science [Acceleration of particles; Cosmic rays; ISM]
researchProduct

A population of isolated hard X-ray sources near the supernova remnant Kes 69

2012

Recent X-ray observations of the supernova remnant IC443 interacting with molecular clouds have shown the presence of a new population of hard X-ray sources related to the remnant itself, which has been interpreted in terms of fast ejecta fragment propagating inside the dense environment. Prompted by these studies, we have obtained a deep {\sl XMM-Newton} observation of the supernova remnant (SNR) Kes 69, which also shows signs of shock-cloud interaction. We report on the detection of 18 hard X-ray sources in the field of Kes 69, a significant excess of the expected galactic source population in the field, spatially correlated with CO emission from the cloud in the remnant environment. The …

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)education.field_of_studyPhotonField (physics)Molecular cloudAstrophysics::High Energy Astrophysical PhenomenaPopulationFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsISM: supernova remnants X-rays: ISM ISM: individual objects: Kes 69Spectral lineSpace and Planetary ScienceEjectaSupernova remnanteducationAstrophysics - High Energy Astrophysical PhenomenaAstrophysics::Galaxy AstrophysicsLine (formation)
researchProduct

EVIDENCE OF NON-THERMAL X-RAY EMISSION FROM HH 80

2013

Protostellar jets appear at all stages of star formation when the accretion process is still at work. Jets travel at velocities of hundreds of km s -1, creating strong shocks when interacting with the interstellar medium. Several cases of jets have been detected in X-rays, typically showing soft emission. For the first time, we report evidence of hard X-ray emission possibly related to non-thermal processes not explained by previous models of the post-shock emission predicted in the jet/ambient interaction scenario. HH 80 is located at the south head of the jet associated with the massive protostar IRAS 18162-2048. It shows soft and hard X-ray emission in regions that are spatially separate…

AstrofísicaCiencias AstronómicasCiencias FísicasAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesSynchrotron radiationAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsIndividual: Iras 18162-2048 [Stars]//purl.org/becyt/ford/1 [https]Herbig-Haro objects ISM: jets and outflows radiation mechanisms: non-thermal stars: individual: IRAS 18162-2048 stars: pre-main sequence X-rays: generalHigh Energy Physics - Phenomenology (hep-ph)Herbig-Haro objectsGeneral [X-Rays]jets and outflows radiation mechanisms: non-thermal stars: individual: IRAS 18162-2048 stars: pre-main sequence X-rays: general [Herbig-Haro objects ISM]Jets And Outflows [Ism]ThermalProtostarstars: individualAstrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsStar formationX-rayAstronomy and Astrophysics//purl.org/becyt/ford/1.3 [https]radiation mechanisms: non-thermalHerbig-Haro ObjectsAstrophysics - Astrophysics of GalaxiesAccretion (astrophysics)Non-Thermal [Radiation Mechanisms]AstronomíaInterstellar mediumHigh Energy Physics - PhenomenologyISM: jets and outflowsSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Astrophysics - High Energy Astrophysical PhenomenaCIENCIAS NATURALES Y EXACTASThe Astrophysical Journal
researchProduct

Predicted gamma-ray image of SN 1006 due to inverse Compton emission

2009

We propose a method to synthesize the inverse Compton (IC) gamma-ray image of a supernova remnant starting from the radio (or hard X-ray) map and using results of the spatially resolved X-ray spectral analysis. The method is successfully applied to SN 1006. We found that synthesized IC gamma-ray images of SN 1006 show morphology in nice agreement with that reported by the H.E.S.S. collaboration. The good correlation found between the observed very-high energy gamma-ray and X-ray/radio appearance can be considered as an evidence that the gamma-ray emission of SN 1006 observed by H.E.S.S. is leptonic in origin, though the hadronic origin may not be excluded.

shock waveCiencias FísicasAstrophysics::High Energy Astrophysical PhenomenaHadronInverseISM: individual: SN 1006FOS: Physical sciencesAstrophysicsImage (mathematics)ISM: cosmic rayACCELERATION OF PARTICLESINDIVIDUAL: SN 1006 [ISM]//purl.org/becyt/ford/1 [https]Spectral analysisSUPERNOVA REMNANTS [ISM]Supernova remnantacceleration of particleISM: supernova remnantsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Spatially resolvedGamma rayAstronomy and Astrophysics//purl.org/becyt/ford/1.3 [https]radiation mechanisms: non-thermalAstronomíaCOSMIC RAYS [ISM]Space and Planetary ScienceAstrophysics - High Energy Astrophysical PhenomenaCIENCIAS NATURALES Y EXACTAS
researchProduct

The X-ray emission of the supernova remnant W49B observed withXMM-Newton

2006

In the framework of the study of supernova remnants and their complex interaction with the interstellar medium, we report on an XMM-Newton EPIC observation of the Galactic supernova remnant W49B. We investigate the spatial distribution of the chemical and physical properties of the plasma, so as to get important constraints on the physical scenario, on the dynamics of the supernova explosion, and on the interaction of the supernova remnant with the ambient interstellar clouds. We present line images, equivalent width maps, and a spatially resolved spectral analysis of a set of homogeneous regions. The X-ray spectrum of W49B is characterized by strong K emission lines from Si, S, Ar, Ca and …

PhysicsAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)Interstellar cloudFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysicsX-rays: ISMISM: individual object: W49BInterstellar mediumSupernovaSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceAstrophysics::Solar and Stellar AstrophysicsSupernova nucleosynthesisEmission spectrumHypernovaSupernova remnantSNR X-raysEquivalent widthISM: supernova remnantAstrophysics::Galaxy AstrophysicsAstronomy & Astrophysics
researchProduct

Modeling nonthermal emission from stellar bow shocks

2016

Context. Runaway O- and early B-type stars passing through the interstellar medium at supersonic velocities and characterized by strong stellar winds may produce bow shocks that can serve as particle acceleration sites. Previous theoretical models predict the production of high-energy photons by nonthermal radiative processes, but their efficiency is still debated. Aims: We aim to test and explain the possibility of emission from the bow shocks formed by runaway stars traveling through the interstellar medium by using previous theoretical models. Methods: We applied our model to AE Aurigae, the first reported star with an X-ray detected bow shock, to BD+43 3654, in which the observations fa…

Shock wavePhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Radiation mechanisms: non-thermal010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstronomy and AstrophysicAcceleration of particle01 natural sciencesX-rays: ISMShock waveSpace and Planetary Science0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysicsnon-thermal; Shock waves; X-rays: ISM; Astronomy and Astrophysics; Space and Planetary Science [Acceleration of particles; Radiation mechanisms]
researchProduct

Thermal emission, shock modification, and X-ray emitting ejecta in SN 1006

2009

Efficient particle acceleration can modify the structure of supernova remnants. In this context we present the results of the combined analysis of the XMM-Newton EPIC archive observations of SN 1006. We aim at describing the spatial distribution of the physical and chemical properties of the X-ray emitting plasma at the shock front. We investigate the contribution of thermal and non-thermal emission to the X-ray spectrum at the rim of the remnant to study how the acceleration processes affect the X-ray emitting plasma. We perform a spatially resolved spectral analysis on a set of regions covering the whole rim of the shell and we exploit the results of the spectral analysis to produce a cou…

Astrophysics::High Energy Astrophysical PhenomenaCiencias FísicasFOS: Physical sciencesContext (language use)AstrophysicsISM: individual objects: SN 1006ISM [X-RAYS]//purl.org/becyt/ford/1 [https]ThermalSUPERNOVA REMNANTS [ISM]EjectaISM: supernova remnantAstrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAstronomy and AstrophysicsPlasma//purl.org/becyt/ford/1.3 [https]X-rays: ISMShock (mechanics)Particle accelerationAstronomíaSupernovaINDIVIDUAL OBJECTS: SN 1006 [ISM]Space and Planetary ScienceMagnetohydrodynamicsAstrophysics - High Energy Astrophysical PhenomenaCIENCIAS NATURALES Y EXACTAS
researchProduct

Modeling the remnants of core-collapse supernovae from luminous blue variable stars

2021

LBVs are massive evolved stars that suffer sporadic and violent mass-loss events. They have been proposed as the progenitors of some core-collapse SNe, but this idea is still debated due to the lack of direct evidence. Since SNRs can carry in their morphology the fingerprints of the progenitor stars as well as of the inhomogeneous CSM sculpted by the progenitors, the study of SNRs from LBVs could help to place core-collapse SNe in context with the evolution of massive stars. We investigate the physical, chemical and morphological properties of the remnants of SNe originating from LBVs, in order to search for signatures, revealing the nature of the progenitors, in the ejecta distribution and…

Shock waveAstrophysics::High Energy Astrophysical Phenomenamedia_common.quotation_subjectStrong interactionSupernovae: generalFOS: Physical sciencesContext (language use)Astrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsAsymmetryStars: individual: Gal 026.47+0.02Settore FIS/05 - Astronomia E AstrofisicaAstrophysics::Solar and Stellar AstrophysicsStars: massiveEjectaAstrophysics::Galaxy AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)ISM: supernova remnantsmedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAstronomy and AstrophysicsSupernovaStarsAstrophysics - Solar and Stellar AstrophysicsLuminous blue variableSpace and Planetary ScienceHydrodynamicsAstrophysics - High Energy Astrophysical PhenomenaAstronomy & Astrophysics
researchProduct

Hydrodynamic simulations of the shock-cloud interaction in the Vela supernova remnant

2005

hydrodynamics SNR shocks modeling
researchProduct

Observational constraints on the modelling of SN 1006

2011

supernova remnantsISM: individual: SN 1006radiation mechanisms: non-thermalacceleration of particlecosmic ray
researchProduct

Overionization in X-ray spectra: a new paradigm for Mixed-Morphology SNRs

2011

Mixed-morphology SNRs are characterized by a shell-like radio emission, a centrally peaked X-ray morphology, and by interaction with molecular clouds. Many models have been proposed to explain these peculiar remnants, but their physical origin is still unclear. The recent discovery of over-ionized (i. e. recombining) ejecta in 3 mixed-morphology SNRs has dramatically challenged all the previous models and opened up new, unexpected scenarios. I review the main properties of these remnants and their peculiar X-ray spectral properties. I also discuss the hydrodynamic model developed to explain the presence of over-ionized ejecta in W49B and present a list of open issues that still need to be c…

High Energy Astrophysical Phenomena (astro-ph.HE)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics - High Energy Astrophysical PhenomenaMixed-morphology SNRs are characterized by a shell-like radio emission a centrally peaked X-ray morphology and by interaction with molecular clouds. Many models have been proposed to explain these peculiar remnants but their physical origin is still unclear. The recent discovery of overionized (i. e. recombining) ejecta in 3 mixed-morphology SNRs has dramatically challenged all the previous models and opened up new unexpected scenarios. I review the main properties of these remnants and their peculiar X-ray spectral properties. I also discuss the hydrodynamic model developed to explain the presence of overionized ejecta in W49B and present a list of open issues that still need to be clarified.Astrophysics::Galaxy Astrophysics
researchProduct

Hydrodynamic modeling of ejecta shrapnels in the Vela SNR

2008

SNR: Vela
researchProduct

A High-resolution Survey of the physical and chemical Inhomogeneities in the Vela SNR

2007

SNR X-rays Vela SNR
researchProduct

Evidence of shock modification in SN 1006

2009

SNR
researchProduct

SNRs as cosmic accelerators

2014

Supernova remnants are considered to be the main source of galactic cosmic rays up to the knee of the cosmic rays energy distribution. I review the increasing set of indications supporting this scenario together with the main open issues.

Nuclear and High Energy PhysicsSettore FIS/05 - Astronomia E Astrofisica
researchProduct

Accretion in young stars: measure of the stream velocity of TW Hya from the X-ray Doppler shift

2015

High-resolution X-ray spectra are a unique tool to investigate the accretion process in young stars. In fact X-rays allow to investigate the accretion-shock region, where the infalling material is heated by strong shocks due to the impact with the denser stellar atmosphere. Here we show for the first time that it is possible to constrain the velocity of the accretion stream by measuring the Doppler shift of the emitted X-rays. To this aim we analyzed the deep Chandra/HETGS observation of the accreting young star TW Hya. We selected a sample of emission lines free from significant blends, fitted them with gaussian profiles, computed the radial velocity corresponding to each line, and average…

Settore FIS/05 - Astronomia E AstrofisicaAstrophysics::High Energy Astrophysical PhenomenaAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics::Earth and Planetary AstrophysicsAccretion accretion disks Stars: pre-main sequence Stars: variables: T Tauri Herbig Ae/Be Techniques: spectroscopic X-rays: starsAstrophysics::Galaxy Astrophysics
researchProduct

Unveiling the spatial structure of the overionized plasma in the supernova remnant W49B

2011

W49B is a mixed-morphology supernova remnant with thermal X-ray emission dominated by the ejecta. In this remnant, the presence of overionized plasma has been directly established, with information about its spatial structure. However, the physical origin of the overionized plasma in W49B has not yet been understood. We investigate this intriguing issue through a 2D hydrodynamic model that takes into account, for the first time, the mixing of ejecta with the inhomogeneous circumstellar and interstellar medium, the thermal conduction, the radiative losses from optically thin plasma, and the deviations from equilibrium of ionization induced by plasma dynamics. The model was set up on the basi…

High Energy Astrophysical Phenomena (astro-ph.HE)ISM: individual objects: W49BPhysics::Plasma PhysicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics - High Energy Astrophysical PhenomenaISM: individual objects: G43.3-0.2Astrophysics::Galaxy Astrophysicshydrodynamicmethods: numericalISM: supernova remnants
researchProduct

The loss-limited electron energy in SN 1006: effects of the shock velocity and of the diffusion process

2013

The spectral shape of the synchrotron X-ray emission from SN 1006 reveals the fundamental role played by radiative losses in shaping the high-energy tail of the electron spectrum. We analyze data from the XMM-Newton SN 1006 Large Program and confirm that in both nonthermal limbs the loss-limited model correctly describes the observed spectra. We study the physical origin of the observed variations of the synchrotron cutoff energy across the shell. We investigate the role played by the shock velocity and by the electron gyrofactor. We found that the cutoff energy of the syncrotron X-ray emission reaches its maximum value in regions where the shock has experienced its highest average speed. T…

High Energy Astrophysical Phenomena (astro-ph.HE)Space and Planetary ScienceAstrophysics::High Energy Astrophysical PhenomenaISM: individual object: (SN 1006)FOS: Physical sciencesAstronomy and AstrophysicAstrophysics - High Energy Astrophysical PhenomenaISM: supernova remnantX-rays: ISM
researchProduct

The outer shock of SN1006

2008

SNR: SN 1006
researchProduct

An X-rays study of the shock-cloud interaction in the Vela SNR

2004

SNR shock X-rays
researchProduct

X-ray emission from supernova remnants interacting with interstellar clouds

2009

SNRmolecular clouds
researchProduct

Suzaku Detection of Diffuse Hard X-Ray Emission outside Vela X

2011

著者人数: 12名

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhotonVela Supernova RemnantAstrophysics::High Energy Astrophysical PhenomenaISM: individual (Vela Pulsar Wind Nebula) ISM: supernova remnants X-rays: ISMFluxFOS: Physical sciencesAstronomy and AstrophysicsElectronAstrophysicsVelaPulsar wind nebulaSpectral linePulsarSpace and Planetary ScienceAstrophysics - High Energy Astrophysical PhenomenaAstrophysics::Galaxy Astrophysics
researchProduct

Plasma heating and particle acceleration in collisionless shocks through astrophysical observations

2023

Supernova remnants (SNRs), the products of stellar explosions, are powerful astrophysical laboratories, which allow us to study the physics of collisionless shocks, thanks to their bright electromagnetic emission. Blast wave shocks generated by supernovae (SNe) provide us with an observational window to study extreme conditions, characterized by high Mach (and Alfvenic Mach) numbers, together with powerful nonthermal processes. In collisionless shocks, temperature equilibration between different species may not be reached at the shock front. In this framework, different particle species might be heated at different temperatures (depending on their mass) in the post-shock medium of SNRs. SNR…

High Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/05 - Astronomia E AstrofisicaNuclear Energy and EngineeringFOS: Physical sciencesshock wavesAstrophysics - High Energy Astrophysical PhenomenaplasmasCondensed Matter Physicsacceleration of particles
researchProduct

Collisionless shock heating of heavy ions in SN 1987A

2019

Astrophysical shocks at all scales, from those in the heliosphere up to the cosmological shock waves, are typically "collisionless", because the thickness of their jump region is much shorter than the collisional mean free path. Across these jumps, electrons, protons, and ions are expected to be heated at different temperatures. Supernova remnants (SNRs) are ideal targets to study collisionless processes because of their bright post-shock emission and fast shocks. Although optical observations of Balmer-dominated shocks in young SNRs showed that the post-shock proton temperature is higher than the electron temperature, the actual dependence of the post-shock temperature on the particle mass…

Shock wave010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesElectronAstrophysics01 natural sciencesmagnetohydrodynamics (MHD)Spectral lineIonISM: cloud0103 physical sciencesISM: individual objects: SN 1987ASupernova remnant010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsISM: supernova remnantacceleration of particle0105 earth and related environmental sciencesHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAstronomy and AstrophysicsX-rays: ISMSupernovaElectron temperatureAstrophysics - High Energy Astrophysical PhenomenaHeliosphere
researchProduct

Modeling SNR shock waves expanding through the magnetized inhomogeneous interstellar medium

2009

We review our recent results on the MHD modeling of supernova shock waves propagating through the magnetized and inhomogeneous ISM. We explore the role of different physical processes simultaneously at work, namely magnetic-field-oriented thermal conduction, radiative cooling and MHD effects, in determining: 1) the mass and energy exchanges between different phases of the ISM and 2) the morphology of supernova remnants as observed in different bands. Our projects required an advanced 3D MHD code for parallel computers, FLASH, and high-performance computing. We discuss the results derived from the analysis of the local interaction of strong shocks with inhomogeneities of the ISM, and those d…

Settore FIS/05 - Astronomia E AstrofisicaMHDSNR
researchProduct

Spectral Evolution of the X-Ray Remnant of SN 1987A: A High-Resolution $Chandra$ HETG Study

2021

Based on observations with the $Chandra$ X-ray Observatory, we present the latest spectral evolution of the X-ray remnant of SN 1987A (SNR 1987A). We present a high-resolution spectroscopic analysis using our new deep ($\sim$312 ks) $Chandra$ HETG observation taken in March 2018, as well as archival $Chandra$ gratings spectroscopic data taken in 2004, 2007, and 2011 with similarly deep exposures ($\sim$170 - 350 ks). We perform detailed spectral model fits to quantify changing plasma conditions over the last 14 years. Recent changes in electron temperatures and volume emission measures suggest that the shocks moving through the inner ring have started interacting with less dense circumstell…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Supernovae (1668)Astrophysics::High Energy Astrophysical PhenomenaSupernova remnants (1667)Resolution (electron density)FluxFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsElectronPlasmaIonSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceObservatoryAstrophysics - High Energy Astrophysical PhenomenaEjectaCircumstellar matter (241)Interstellar medium (847)Line (formation)
researchProduct

3D modeling from the onset of the SN to the full-fledged SNR: Role of an initial ejecta anisotropy on matter mixing

2020

The aim of this work is to bridge the gap between CC SNe and their remnants by investigating how post-explosion anisotropies in the ejecta influence the structure and chemical properties of the remnant at later times. We performed three-dimensional magneto-hydrodynamical simulations starting soon after the SN event and following the evolution of the system in the circumstellar medium (consisting of the wind of the stellar progenitor), for 5000 years, obtaining the physical scenario of a SNR. Here we focused the analysis on the case of a progenitor red supergiant of 19.8 M_sun. We also investigated how a post-explosion large-scale anisotropy in the SN affects the ejecta distribution and the …

High Energy Astrophysical Phenomena (astro-ph.HE)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Solar and Stellar AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaAstrophysics::Galaxy Astrophysics
researchProduct

X-raying hadronic acceleration at the SN 1006 shock front

2012

Shock fronts in young supernova remnants are the best candidates for being sites of cosmic rays acceleration up to a few PeV, though conclusive experimental evidence is still lacking. Theoretical models predict that particle acceleration can modify the post-shock properties, e. g. by increasing the plasma density. We exploited the Large Program of deep XMM-Newton observations of SN 1006 to verify this prediction. We focused on the rim of the supernova remnant and by performing spatially resolved spectral analysis, we found that the shock compression ratio significantly increases in regions where particle acceleration is efficient, in agreement with expectations. Our results provide observat…

AstrophysicSettore FIS/05 - Astronomia E AstrofisicaX-raysSupernova Remnant
researchProduct

Multi-phase interstellar clouds in the Vela SNR resolved with XMM-Newton

2005

XMM-Newton spatial/spectral resolution and high effective area allow to deepen our knowledge about the shocks in Supernova Remnants and their interaction with the interstellar medium. We present the analysis of an EPIC observation of the northern rim of the Vela SNR and we compare the X-ray and optical morphology of the emission. We derive a description of the internal structure of the shocked interstellar clouds, arguing that the transmitted shock model is compatible with our data. We also suggest that thermal conduction between clouds and inter-cloud medium is very efficient and produces the evaporation of the clouds in the interstellar medium. � 2005 COSPAR. Published by Elsevier Ltd. Al…

PhysicsAtmospheric ScienceCommittee on Space ResearchAstrophysics::High Energy Astrophysical PhenomenaInterstellar cloudAerospace EngineeringAstronomyAstronomy and AstrophysicsAstrophysicsVelaThermal conductionNear-Earth supernovaX-rays: ISMInterstellar mediumSupernovaGeophysicsSpace and Planetary ScienceSupernova remnantGeneral Earth and Planetary SciencesVela SNRSpectral resolutionAstrophysics::Galaxy AstrophysicsAdvances in Space Research
researchProduct

Shock-cloud interaction in the Vela SNR: the XMM-Newton view

2004

Vela SNR XMM
researchProduct

X-ray structures from outflowing Young Stellar Objects interacting with the Interstellar Medium

2012

N/A
researchProduct

Shock-cloud interaction in the Vela SNR observed with XMM-Newton

2005

We analyzed an XMM-Newton EPIC observation of a bright knot, named FilD, in the northern rim of the Vela SNR, where the shock has encountered a cloud. The good combination of sensitivity, spectral, and spatial resolution allowed us to describe the internal structure of the observed ISM clouds and to obtain estimates of their temperature, density, O, Ne, and Fe abundances, and of their extension along the line of sight. We also examined the interaction of the shock with the FilD knot and estimated that the time elapsed from the shock impact is about one cloud crushing time. Our analysis allowed us to conclude that the observed X-ray emission is best explained by the propagation of transmitte…

PhysicsLine-of-sightbusiness.industryAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)FOS: Physical sciencesAstronomy and AstrophysicsCloud computingAstrophysicsEPICVelaAstrophysicsX-rays: ISMKnot (unit)ISM: individual objects: Vela SNRSpace and Planetary ScienceISM: cloudISM: kinematics and dynamicbusinessImage resolutionISM: supernova remnantAstrophysics::Galaxy Astrophysics
researchProduct

Constraints on the local interstellar magnetic field from non-thermal emission of SN1006

2011

The synchrotron radio morphology of bilateral supernova remnants depends on the mechanisms of particle acceleration and on the viewing geometry. However, unlike X-ray and $\gamma$-ray morphologies, the radio emission does not depend on the cut-off region of the parent electron population, making it a simpler and more straightforward tool to investigate the physics of cosmic ray production in SNRs. Our aim is to derive from the radio morphology tight constraints on the direction of the local magnetic field and its gradient, and on the obliquity dependence of the electron injection efficiency. We perform a set of 3D MHD simulations describing the expansion of a spherical SNR through a magneti…

High Energy Astrophysical Phenomena (astro-ph.HE)Physicsshock waveField (physics)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsCosmic rayField strengthAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsGalactic planeGalaxyMagnetic fieldSupernovaSpace and Planetary ScienceMagnetohydrodynamicsAstrophysics - High Energy Astrophysical Phenomenaacceleration of particleAstrophysics::Galaxy AstrophysicsISM: supernova remnantsAstronomy & Astrophysics
researchProduct

Spatially Resolved Broadband Synchrotron Emission from the Nonthermal Limbs of SN1006

2018

We present ~400ks NuSTAR observations of the northeast (NE) and southwest (SW) non-thermal limbs of the Galactic SNR SN1006. We discovered three sources with X-ray emission detected at >50keV. Two of them are identified as background AGN. We extract the NuSTAR spectra from a few regions along the non-thermal limbs and jointly analyze them with the XMM-Newton spectra and the radio data. The broad-band radio/X-ray spectra can be well described with a synchrotron emission model from a single population of CR electrons with a power law energy distribution and an exponential cutoff. The power law index of the electron particle distribution function (PDF) is ~1.88-1.95 for both the NE and SW l…

media_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaPopulationFOS: Physical sciencesAstrophysicsElectronAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesAsymmetryPower lawSpectral linecosmic rays0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsEmission spectrumeducation010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysicsmedia_commonISM: supernova remnantsacceleration of particlesHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicseducation.field_of_study010308 nuclear & particles physicsAstronomy and Astrophysicsshock wavesAstronomy and Astrophysicradiation mechanisms: non-thermalX-rays: ISMMagnetic fieldSpace and Planetary ScienceAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Lepton
researchProduct

Deep XMM-Newton Observations Reveal the Origin of Recombining Plasma in the Supernova Remnant W44

2019

Recent X-ray studies revealed over-ionized recombining plasmas (RPs) in a dozen mixed-morphology (MM) supernova remnants (SNRs). However, the physical process of the over-ionization has not been fully understood yet. Here we report on spatially resolved spectroscopy of X-ray emission from W44, one of the over-ionized MM-SNRs, using XMM-Newton data from deep observations, aiming to clarify the physical origin of the over-ionization. We find that combination of low electron temperature and low recombination timescale is achieved in the region interacting with dense molecular clouds. Moreover, a clear anti-correlation between the electron temperature and the recombining timescale is obtained f…

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaSupernova remnants (1667)FOS: Physical sciencesAstrophysicsMolecular cloud01 natural sciencesX-ray astronomySettore FIS/05 - Astronomia E AstrofisicaPlasma astrophysics (1261)Supernova remnant0103 physical sciencesPlasma astrophysicsSupernova remnantAdiabatic processSpectroscopy010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsX-ray astronomyMolecular cloudAstronomy and AstrophysicsPlasmaSupernovaSpace and Planetary ScienceMolecular clouds (1072)Electron temperatureX-ray astronomy (1810)Astrophysics - High Energy Astrophysical PhenomenaThe Astrophysical Journal
researchProduct

High Performance Computing on the COMETA Grid Infrastructure

2008

We present the High Performance Computing (HPC) projects jointly developed at the INAF - Osservatorio Astronomico di Palermo and at the DSFA - Universita` di Palermo which benefits of the Grid infrastructure of COMETA. We have contributed to setup the infrastructure in order to run HPC applications on the Grid. We report on our experience regarding to porting HPC applications to the Grid and to the first HPC simulations performed. The most demanding simulations describe the interaction of a magnetized supernova shock wave with an interstellar gas cloud. We discuss the resources required for the simulations, the performance and the scalability of our code on the Grid, and present first resul…

MagnetohydrodynamicsSettore FIS/05 - Astronomia E AstrofisicaHigh Performance ComputingHydrodynamicsAstrophysics
researchProduct

Observability and diagnostics in the X-ray band of shock-cloud interactions in supernova remnants

2010

X-ray emitting features originating from the interaction of supernova shock waves with small interstellar gas clouds are revealed in many X-ray observations of evolved supernova remnants (e.g. Cygnus Loop and Vela), but their interpretation is not straightforward. We develop a self-consistent method for the analysis and interpretation of shock-cloud interactions in middle-aged supernova remnants, which can provide the key parameters of the system and the role of relevant physical effects like the thermal conduction, without the need to run ad-hoc numerical simulations and to bother of morphology details. We explore all the possible values of the shock speed and cloud density contrast releva…

High Energy Astrophysical Phenomena (astro-ph.HE)Shock wavePhysicsCygnus LoopRadiative coolingAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsHydrodynamicThermal conductionVelaX-rays: ISMComputational physicsShock (mechanics)SupernovaShock waveISM: cloudSpace and Planetary ScienceDensity contrastAstrophysics - High Energy Astrophysical PhenomenaISM: supernova remnantAstrophysics::Galaxy AstrophysicsAstronomy and Astrophysics
researchProduct

The supernova remnant SN 1006 as a Galactic particle accelerator

2022

The origin of cosmic rays is a pivotal open issue of high-energy astrophysics. Supernova remnants are strong candidates to be the Galactic factory of cosmic rays, their blast waves being powerful particle accelerators. However, supernova remnants can power the observed flux of cosmic rays only if they transfer a significant fraction of their kinetic energy to the accelerated particles, but conclusive evidence for such efficient acceleration is still lacking. In this scenario, the shock energy channeled to cosmic rays should induce a higher post-shock density than that predicted by standard shock conditions. Here we show this effect, and probe its dependence on the orientation of the ambient…

High Energy Astrophysical Phenomena (astro-ph.HE)Astrophysical plasmasSHARPHorizon 2020MultidisciplinaryFOS: Physical sciencesGeneral Physics and Astronomyshock wavesGeneral ChemistryGeneral Biochemistry Genetics and Molecular BiologyHigh-energy astrophysicsSettore FIS/05 - Astronomia E AstrofisicaEuropean Union (EU)Particle astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - High Energy Astrophysical Phenomenacosmic rayNature Communications
researchProduct

Additional Evidence for a Pulsar Wind Nebula in the Heart of SN 1987A from Multiepoch X-Ray Data and MHD Modeling

2022

Since the day of its explosion, supernova (SN) 1987A has been closely monitored to study its evolution and to detect its central compact relic. In fact, the formation of a neutron star is strongly supported by the detection of neutrinos from the SN. However, besides the detection in the Atacama Large Millimeter/submillimeter Array (ALMA) data of a feature that is compatible with the emission arising from a proto-pulsar wind nebula (PWN), the only hint for the existence of such elusive compact object is provided by the detection of hard emission in NuSTAR data up to ~ 20 keV. We report on the simultaneous analysis of multi-epoch observations of SN 1987A performed with Chandra, XMM-Newton and…

SHARPSupernova remnantsAstrophysics::High Energy Astrophysical PhenomenaNeutron starFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsX-ray sourcesNeutron starsX-ray sourceX-ray astronomyMagnetohydrodynamical simulationSettore FIS/05 - Astronomia E AstrofisicaSupernova remnantPulsarPlasma astrophysicsPlasma astrophysicX-ray point sourcesX-ray observatoriesShocksCompact objectsPulsarsAstrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Horizon 2020Magnetohydrodynamical simulationsShockAstronomy and AstrophysicsX-ray point sourceInterstellar synchrotron emissionX-ray observatorieSpace and Planetary ScienceEuropean Union (EU)Astrophysics - High Energy Astrophysical PhenomenaCompact objectThe Astrophysical Journal
researchProduct

Effects of non-uniform interstellar magnetic field on synchrotron X-ray and inverse-Compton γ-ray morphology of supernova remnants

2011

Context. Observations of SuperNova Remnants (SNRs) in X-ray and γ-ray bands promise to contribute important information to our understanding of the kinematics of charged particles and magnetic fields in the vicinity of strong non-relativistic shocks and, therefore, the nature of Galactic cosmic rays. The accurate analysis of SNR images collected in different energy bands requires theoretical modeling of synchrotron and inverse Compton emission from SNRs. Aims. We develop a numerical code (remlight) to synthesize, from MHD simulations, the synchrotron radio, X-ray, and inverse Compton γ-ray emission originating in SNRs expanding in a non-uniform interstellar medium (ISM) and/or non-uniform i…

Physicsshock waveAstrophysics::High Energy Astrophysical Phenomenamedia_common.quotation_subjectGamma rayAstronomy and AstrophysicsCosmic rayAstrophysics::Cosmology and Extragalactic AstrophysicsElectronradiation mechanisms: non-thermalAsymmetrymagnetohydrodynamics (MHD)SynchrotronX-rays: ISMComputational physicsMagnetic fieldlaw.inventionInterstellar mediumgamma rays: ISMSpace and Planetary SciencelawMagnetohydrodynamicsAstrophysics::Galaxy AstrophysicsISM: supernova remnantmedia_common
researchProduct

XMM-Newton observations of the supernova remnant IC 443: II. evidence of stellar ejecta in the inner regions

2008

We investigate the spatial distribution of the physical and chemical properties of the hot X-ray emitting plasma of the supernova remnant IC 443, in order to get important constraints on its ionization stage, on the progenitor supernova explosion, on the age of the remnant, and its physical association with a close pulsar wind nebula. The hard X-ray thermal emission (1.4-5.0 keV) of IC 443 displays a centrally-peaked morphology, its brightness peaks being associated with hot (kT>1 keV) X-ray emitting plasma. A ring-shaped structure, characterized by high values of equivalent widths and median photon energy, encloses the PWN. Its hard X-ray emission is spectrally characterized by a collis…

PhysicsAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)FOS: Physical sciencesAstronomy and AstrophysicsPlasmaAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsPhoton energyAstrophysicsPulsar wind nebulaSupernovaSpace and Planetary ScienceIonizationEmission spectrumEjectaSupernova remnantAstrophysics::Galaxy Astrophysics
researchProduct

Physical and Chemical Inhomogeneities Inside the Vela SNR Shell: Indications of Ejecta Shrapnels

2007

We present the results of the combined analysis of three XMM-Newton EPIC observations of the northern rim of the Vela SNR. The three pointings cover an area of ~10 pc^2 (at 250 pc) behind the main shock front and we aim at studying with high resolution the spatial distribution of the physical and chemical properties of the X-ray emitting plasma on this large scale. We produce count-rate images and equivalent width maps of the Ne IX and Mg XI emission blends. We also perform a spatially resolved spectral analysis of a set of physically homogeneous regions. We reveal physical and chemical inhomogeneities in the X-ray emitting plasma. In particular, we find large variations of the O, Ne, Mg, a…

PhysicsAstrophysics::High Energy Astrophysical PhenomenaSpatially resolvedAstrophysics (astro-ph)Shell (structure)FOS: Physical sciencesAstronomy and AstrophysicsScale (descriptive set theory)AstrophysicsPlasmaAstrophysicsSpatial distributionVelaSpace and Planetary ScienceEjectaEquivalent widthAstrophysics::Galaxy AstrophysicsThe Astrophysical Journal
researchProduct

Modeling the non-thermal emission from bowshocks produced by runaway stars

2014

N/A
researchProduct

X-ray emission from protostellar jet HH 154: first evidence of a diamond shock?

2011

N/A
researchProduct

New constraints on chemical abundances of the shocked plasma in the supernova remnant IC443

2008

SNR: IC443
researchProduct

Shock-cloud interactions in the Vela SNR: preliminary results of an XMM-Newton observation

2004

ISM: individual objectISM: structureVela supernova remnantISM: cloudsX-rays: ISMISM: supernova remnant
researchProduct