6533b823fe1ef96bd127eccb

RESEARCH PRODUCT

X-rays from accretion shocks in classical T Tauri stars: 2D MHD modeling and the role of local absorption

Salvatore OrlandoCostanza ArgiroffiL. IbguiC. StheléRosaria BonitoGiovanni PeresMarco MiceliFabio RealeTitos Matsakos

subject

Accretion MHD Stars: pre-main sequence X-rays: starsPhysicsbusiness.product_categoryAstronomyAstronomy and AstrophysicsAstrophysicsViewing angleAccretion (astrophysics)Spectral lineMagnetic fieldT Tauri starSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary Sciencepre-main sequence X-rays: stars [Accretion MHD Stars]FunnelMagnetohydrodynamicsbusinessChromosphere

description

AbstractIn classical T Tauri stars (CTTS) strong shocks are formed where the accretion funnel impacts with the denser stellar chromosphere. Although current models of accretion provide a plausible global picture of this process, some fundamental aspects are still unclear: the observed X-ray luminosity in accretion shocks is order of magnitudes lower than predicted; the observed density and temperature structures of the hot post-shock region are puzzling and still unexplained by models.To address these issues we performed 2D MHD simulations describing an accretion stream impacting onto the chromosphere of a CTTS, exploring different configurations and strengths of the magnetic field. From the model results we then synthesized the X-ray emission emerging from the hot post-shock, taking into account the local absorption due to the pre-shock stream and surrounding atmosphere.We find that the different configurations and strengths of the magnetic field profoundly affect the hot post-shock properties. Moreover the emerging X-ray emission strongly depends also on the viewing angle under which accretion is observed. Some of the explored configuration are able to reproduce the observed features of X-ray spectra of CTTS.

https://doi.org/10.1017/s1743921314001707