6533b828fe1ef96bd1287bc3

RESEARCH PRODUCT

Detailed study of SNR G306.3–0.9 using XMM-Newton and Chandra observations

Jorge Ariel CombiJorge Ariel CombiPedro L. Luque-escamillaSergio Ariel ParonMarco MiceliMarco MiceliA. E. SuárezA. E. SuárezFederico GarcíaFederico García

subject

Ciencias AstronómicasInfraredCiencias FísicasAstrophysics::High Energy Astrophysical PhenomenaISM [Infrared]FOS: Physical sciencesthermal [radiation mechanism]individual objects: SNR G306.3–0.9 [ISM]AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSpectral line//purl.org/becyt/ford/1 [https]ISM: individual objects: SNR G306.3IonizationISM [X-ray]0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsISM [X-rays]Radio continuum: ISMEjectaSupernova remnant010303 astronomy & astrophysicsISM: supernova remnantAstrophysics::Galaxy AstrophysicsISM: supernova remnantsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Infrared: ISM010308 nuclear & particles physicssupernova remnants [ISM]Astronomy and AstrophysicsPlasma//purl.org/becyt/ford/1.3 [https]Astronomy and AstrophysicISM: individual objects: SNR G306.3–0.9ISM [Radio continuum]Radiation mechanisms: thermalX-rays: ISMindividual objects: G306.3-0.9 [ISM]Interstellar mediumAstronomíaSupernovathermal [Radiation mechanisms]Space and Planetary ScienceISM; ISM: individual objects: SNR G306.3; ISM: supernova remnants; Radiation mechanisms: thermal; Radio continuum: ISM; X-rays: ISM; Astronomy and Astrophysics; Space and Planetary Science [0.9; Infrared]0.9Astrophysics - High Energy Astrophysical PhenomenaCIENCIAS NATURALES Y EXACTAS

description

Aims. We aim to study the spatial distribution of the physical and chemical properties of the X-ray emitting plasma of the supernova remnant (SNR) G306.3-0.9 in detail to obtain constraints on its ionization stage, the progenitor supernova explosion, and the age of the remnant. Methods. We used combined data from XMM-Newton and Chandra observatories to study the X-ray morphology of G306.3-0.9 in detail. A spatially resolved spectral analysis was used to obtain physical and geometrical parameters of different regions of the remnant. Spitzer infrared observations, available in the archive, were also used to constrain the progenitor supernova and study the environment in which the remnant evolved. Results. The X-ray morphology of the remnant displays a non-uniform structure of semi-circular appearance, with a bright southwest region and very weak or almost negligible X-ray emission in its northern part. These results indicate that the remnant is propagating in a non-uniform environment as the shock fronts are encountering a high-density medium, where enhanced infrared emission is detected. The X-ray spectral analysis of the selected regions shows distinct emission-line features of several metal elements, confirming the thermal origin of the emission. The X-ray spectra are well represented by a combination of two absorbed thermal plasma models: one in equilibrium ionization (VAPEC) with a mean temperature of ∼0.19 keV, and another out of equilibrium ionization (VNEI) at a higher temperature of ∼1.1 or 1.6-1.9 keV. For regions located in the northeast, central, and southwest part of the SNR, we found elevated abundances of Si, S, Ar, Ca, and Fe, typical of ejecta material. The outer regions located northwest and south show values of the abundances above solar but lower than to those found in the central regions. This suggests that the composition of the emitting outer parts of the SNR is a combination of ejecta and shocked material of the interstellar medium. The comparison between the S/Si, Ar/Si, and Ca/Si abundances ratios (1.75, 1.27, and 2.72 in the central region, respectively), favor a Type Ia progenitor for this remnant, a result that is also supported by an independent morphological analysis using the X-ray and 24 μm IR data.

http://sedici.unlp.edu.ar/handle/10915/86501