6533b82efe1ef96bd1293e2c

RESEARCH PRODUCT

X-ray emitting structures in the Vela SNR: ejecta anisotropies and progenitor stellar wind residuals

Manami SasakiVincenzo SapienzaVincenzo SapienzaFabrizio BocchinoE. GrecoE. GrecoFederico GarcíaJorge Ariel CombiJorge Ariel CombiGiovanni PeresGiovanni PeresMarco MiceliMarco MiceliSalvatore Orlando

subject

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesContext (language use)AstrophysicsISM [X-RAYS]Photon energyVela01 natural sciences//purl.org/becyt/ford/1 [https]Protein filamentSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesROSATAstrophysics::Solar and Stellar AstrophysicsSUPERNOVA REMNANTS [ISM]Ejecta010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsISM: supernova remnantsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsVela Supernova Remnant010308 nuclear & particles physicsAstronomy and Astrophysics//purl.org/becyt/ford/1.3 [https]X-rays: ISMSupernovaISM: individual objects: Vela SNRSpace and Planetary ScienceINDIVIDUAL OBJECTS: VELA SNR [ISM]Astrophysics - High Energy Astrophysical Phenomena

description

The Vela supernova remnant (SNR) shows several ejecta fragments protruding beyond the forward shock (shrapnel). Recent studies have revealed high Si abundance in two shrapnel (A and G), located in opposite directions with respect to the SNR center. This suggests the possible existence of a Si-rich jet-counterjet structure. We analyzed an XMM-Newton observation of a bright clump, behind shrapnel G, which lies along the direction connecting A and G. The aim is to study the physical and chemical properties of this clump to ascertain whether it is part of this putative jet-like structure. We produced background-corrected and adaptively-smoothed count-rate images and median photon energy maps, and performed a spatially resolved spectral analysis. We identified two structures with different physical properties. The first one is remarkably elongated along the direction connecting A and G. Its X-ray spectrum is much softer than that of the other two shrapnel, to the point of hindering the determination of the Si abundance, however its physical and chemical properties are consistent with those of shrapnel A and G. The second structure, running along the southeast-northwest direction, has a higher temperature and appears like a thin filament. By analyzing the ROSAT data, we have found that this filament is part of a very large and coherent structure that we identified in the western rim of the shell. We obtained a thorough description of the tail of Shrapnel G. In addition we discovered a coherent and very extended feature that we interpret as a signature of an earlier interaction of the remnant with the stellar wind of its progenitor star. The peculiar Ne/O ratio we found in the wind residual may be suggestive of a Wolf-Rayet progenitor for Vela SNR, though further analysis is required to address this point.

https://doi.org/10.1051/0004-6361/202140412