6533b854fe1ef96bd12aebcf
RESEARCH PRODUCT
Unveiling pure-metal ejecta X-ray emission in supernova remnants through their radiative recombination continuum
V. DomcekGiovanni PeresFabrizio BocchinoE. GrecoMarco MiceliJacco VinkPing ZhouSalvatore Orlandosubject
High Energy Astrophysical Phenomena (astro-ph.HE)Physics010504 meteorology & atmospheric sciencesSpectrometerAstrophysics::High Energy Astrophysical PhenomenaBremsstrahlungFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics01 natural sciencesSpectral lineSupernovaSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceNucleosynthesis0103 physical sciencesISM: abundances ISM: individual objects: Cas A ISM: supernova remnants X-rays: general X-rays: individuals: Cas AAstrophysics::Solar and Stellar AstrophysicsSpontaneous emissionSpectral resolutionAstrophysics - High Energy Astrophysical PhenomenaEjecta010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesdescription
Spectral analysis of X-ray emission from ejecta in supernova remnants (SNRs) is hampered by the low spectral resolution of CCD cameras, which creates a degeneracy between the best-fit values of abundances and emission measure. The combined contribution of shocked ambient medium and ejecta to the X-ray emission complicates the determination of the ejecta mass and chemical composition, leading to big uncertainties in mass estimates and it can introduce a bias in the comparison between the observed ejecta composition and the yields predicted by explosive nucleosynthesis. We explore the capabilities of present and future spectral instruments with the aim of identifying a spectral feature which may allow us to discriminate between metal-rich and pure-metal plasmas in X-ray spectra of SNRs. We studied the behavior of the most common X-ray emission processes of an optically thin plasma in the high-abundance regime. We investigated spectral features of bremsstrahlung, radiative recombination continua (RRC) and line emission, by exploring a wide range of chemical abundances, temperatures and ionization parameters. We synthesized X-ray spectra from a 3D hydrodynamic (HD) simulation of Cas A, by using the response matrix from the Chandra/ACIS-S CCD detector and that of the XRISM/Resolve X-ray calorimeter. We found that a bright RRC shows up when the plasma is made of pure-metal ejecta, and a high spectral resolution is needed to identify this ejecta signature. We verified the applicability of our novel diagnostic tool and we propose a promising target for the future detection of such spectral feature: the southeastern Fe-rich clump of Cas A. While there is no way to unambiguously reveal pure-metal ejecta emission with CCD detectors, X-ray calorimeters will be able to pinpoint the presence of pure-metal RRC and to recover correctly absolute mass and the chemical composition of the ejecta.
year | journal | country | edition | language |
---|---|---|---|---|
2020-06-01 |