0000000000054575

AUTHOR

Ping Zhou

showing 5 related works from this author

XMM-Newton observation of the supernova remnant Kes 78 (G32.8-0.1): Evidence for shock-cloud interaction

2017

The Galactic supernova remnant Kes 78 is surrounded by dense molecular clouds, whose projected position overlaps with the extended HESS gamma-ray source HESS J1852-000. The X-ray emission from the remnant has been recently revealed by Suzaku observations, which have shown indications for a hard X-ray component in the spectra, possibly associated with synchrotron radiation. We aim at describing the spatial distribution of the physical properties of the X-ray emitting plasma and at revealing the effects of the interaction of the remnant with the inhomogeneous ambient medium. We also aim at investigating the origin of the gamma-ray emission, which may be Inverse Compton radiation associated wi…

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaHadronSynchrotron radiationFOS: Physical sciencesElectronAstrophysicsISM: individual objects: Kes 7801 natural sciencesSpectral linelaw.inventionlawISM: cloud0103 physical sciencesSupernova remnant010303 astronomy & astrophysicsISM: supernova remnantAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Molecular cloudAstronomy and AstrophysicsPlasmaAstronomy and AstrophysicAcceleration of particleSynchrotronX-rays: ISM13. Climate actionSpace and Planetary ScienceAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Spatially Resolved Broadband Synchrotron Emission from the Nonthermal Limbs of SN1006

2018

We present ~400ks NuSTAR observations of the northeast (NE) and southwest (SW) non-thermal limbs of the Galactic SNR SN1006. We discovered three sources with X-ray emission detected at >50keV. Two of them are identified as background AGN. We extract the NuSTAR spectra from a few regions along the non-thermal limbs and jointly analyze them with the XMM-Newton spectra and the radio data. The broad-band radio/X-ray spectra can be well described with a synchrotron emission model from a single population of CR electrons with a power law energy distribution and an exponential cutoff. The power law index of the electron particle distribution function (PDF) is ~1.88-1.95 for both the NE and SW l…

media_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaPopulationFOS: Physical sciencesAstrophysicsElectronAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesAsymmetryPower lawSpectral linecosmic rays0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsEmission spectrumeducation010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysicsmedia_commonISM: supernova remnantsacceleration of particlesHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicseducation.field_of_study010308 nuclear & particles physicsAstronomy and Astrophysicsshock wavesAstronomy and Astrophysicradiation mechanisms: non-thermalX-rays: ISMMagnetic fieldSpace and Planetary ScienceAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Lepton
researchProduct

Spatially resolved X-ray study of supernova remnants that host magnetars: Implication of their fossil field origin

2019

Magnetars are regarded as the most magnetized neutron stars in the Universe. Aiming to unveil what kinds of stars and supernovae can create magnetars, we have performed a state-of-the-art spatially resolved spectroscopic X-ray study of the supernova remnants (SNRs) Kes 73, RCW 103, and N49, which host magnetars 1E 1841-045, 1E 161348-5055, and SGR 0526-66, respectively. The three SNRs are O- and Ne-enhanced and are evolving in the interstellar medium with densities of >1--2 cm$^{-3}$. The metal composition and dense environment indicate that the progenitor stars are not very massive. The progenitor masses of the three magnetars are constrained to be < 20 Msun (11--15 Msun for Kes 73, …

Nuclear reactionAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsMagnetar7. Clean energy01 natural sciencesSettore FIS/05 - Astronomia E AstrofisicaPulsarNucleosynthesispulsars: general0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010306 general physics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)ISM: supernova remnantPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Astronomy and AstrophysicsInterstellar mediumNeutron starSupernovaStarsAstrophysics - Solar and Stellar Astrophysicsnuclear reactions nucleosynthesis abundance13. Climate actionSpace and Planetary Sciencestars: magnetarAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Unveiling pure-metal ejecta X-ray emission in supernova remnants through their radiative recombination continuum

2020

Spectral analysis of X-ray emission from ejecta in supernova remnants (SNRs) is hampered by the low spectral resolution of CCD cameras, which creates a degeneracy between the best-fit values of abundances and emission measure. The combined contribution of shocked ambient medium and ejecta to the X-ray emission complicates the determination of the ejecta mass and chemical composition, leading to big uncertainties in mass estimates and it can introduce a bias in the comparison between the observed ejecta composition and the yields predicted by explosive nucleosynthesis. We explore the capabilities of present and future spectral instruments with the aim of identifying a spectral feature which …

High Energy Astrophysical Phenomena (astro-ph.HE)Physics010504 meteorology & atmospheric sciencesSpectrometerAstrophysics::High Energy Astrophysical PhenomenaBremsstrahlungFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics01 natural sciencesSpectral lineSupernovaSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceNucleosynthesis0103 physical sciencesISM: abundances ISM: individual objects: Cas A ISM: supernova remnants X-rays: general X-rays: individuals: Cas AAstrophysics::Solar and Stellar AstrophysicsSpontaneous emissionSpectral resolutionAstrophysics - High Energy Astrophysical PhenomenaEjecta010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciences
researchProduct

Observatory science with eXTP

2019

Disponible preprint en: arXiv:1812.04023v1 [astro-ph.HE] [v1] Mon, 10 Dec 2018 19:00:52 UTC (4,376 KB)

cataclysmic binariesAstronomyFIELD CAMERAS OBSERVATIONSspace research instruments nuclear astrophysics flare stars accretion and accretion disks mass loss and stellar winds cataclysmic binaries X-ray binaries supernova remnants active galactic nuclei X-ray bursts gamma-ray bursts gravitational wavesGeneral Physics and Astronomygamma-ray burstspace research instrument01 natural sciencesGamma ray burstsObservatoryAccretion and accretion disksAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsgravitational waveaccretion and accretion diskPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)supernova remnants[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph][SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]flare starsgamma-ray burstsAstrophysics::Instrumentation and Methods for Astrophysicsaccretion and accretion disks; active galactic nuclei; cataclysmic binaries; flare stars; gamma-ray bursts; gravitational waves; mass loss and stellar winds; nuclear astrophysics; space research instruments; supernova remnants; X-ray binaries; X-ray bursts; Physics and Astronomy (all)Space research instrumentsX ray burstSupernovaX-ray binariesgravitational wavesaccretion and accretion disksQUIETHigh massX-ray binarieMass loss and stellar windsNuclear astrophysicsGamma-ray burstsspace research instrumentsAstrophysics - High Energy Astrophysical PhenomenaPULSAR-WIND NEBULAEFAST RADIO-BURSTSAstrofísica nuclearActive galactic nucleusTIDAL DISRUPTIONSupernova remnantsAstrophysics::High Energy Astrophysical Phenomenanuclear astrophysicsPolarimetryFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsACCRETING NEUTRON-STARSaccretion and accretion disks; active galactic nuclei; cataclysmic binaries; flare stars; gamma-ray bursts; gravitational waves; mass loss and stellar winds; nuclear astrophysics; space research instruments; supernova remnants; X-ray binaries; X-ray burstsGravitational wavesPhysics and Astronomy (all)cataclysmic binarieSettore FIS/05 - Astronomia e AstrofisicaSUPERMASSIVE BLACK-HOLES0103 physical sciences010306 general physicsX-ray burstAstrophysics::Galaxy AstrophysicsCataclysmic binariesActive galactic nucleiflare starAstronomyWhite dwarfFlare starsStarssupernova remnantQB460-466 Astrophysics[SDU]Sciences of the Universe [physics]mass loss and stellar wind:Física::Astronomia i astrofísica [Àrees temàtiques de la UPC]active galactic nucleiX-RAYX-ray burstsSupernova remmantsmass loss and stellar windsX ray binaries[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]SEYFERT 1 GALAXYnuclear astrophysic
researchProduct