0000000000549814

AUTHOR

Sunpreet Singh

0000-0001-9592-4828

Surface Characteristics of Machined Polystyrene with 3D Printed Thermoplastic Tool

An effort is made in this work to appraise the surface characteristics of machined expandable polystyrene (EPS) with a novel 3D printed thermoplastic acrylonitrile-butadiene-styrene (ABS) tool. Linear grooves on EPS were made on a vertical milling machine that was modified to conduct experiments in the laboratory. The tests were designed as per the Taguchi L9 based factorial design of experimentation while varying process parameters such as depth of cut, spindle speed, and feed rate. The machining responses dimensional accuracy and surface roughness of the machined grooves were studied. Furthermore, the surface topography of the machined specimens was considered to investigate the mechanism…

research product

Microwave sintering of porous Ti–Nb-HA composite with high strength and enhanced bioactivity for implant applications

Abstract In the present study, high order porous Ti–Nb(50-x)-HA(x) (x = 0,10,20 wt %) composites have been fabricated for orthopedic application by using powder metallurgical route consisting temporary space alloying and rapid microwave sintering process. Structural porosity, elastic modulus, compressive strength, corrosion resistance, and in-vitro bioactivity of as-sintered Ti–Nb-HA composites were studied. Results showed that the reinforcement of the HA assists in the formation of structural porosity, which reduced the elastic modulus. Porous Ti–Nb (with HA 10–20% content) composite possessed 40–60% structural porosity with a pore size of 150–260 μm and exhibited elastic modulus in the ra…

research product