0000000000549817

AUTHOR

Duc Huy Luong

showing 5 related works from this author

Towards saturation of the electron-capture delayed fission probability: The new isotopes $^{240}Es$ and $^{236}Bk$

2016

Abstract The new neutron-deficient nuclei 240 Es and 236 Bk were synthesised at the gas-filled recoil separator RITU. They were identified by their radioactive decay chains starting from 240 Es produced in the fusion–evaporation reaction 209 Bi( 34 S,3n) 240 Es. Half-lives of 6 ( 2 ) s and 22 − 6 + 13 s were obtained for 240 Es and 236 Bk, respectively. Two groups of α particles with energies E α = 8.19 ( 3 ) MeV and 8.09 ( 3 ) MeV were unambiguously assigned to 240 Es. Electron-capture delayed fission branches with probabilities of 0.16 ( 6 ) and 0.04 ( 2 ) were measured for 240 Es and 236 Bk, respectively. These new data show a continuation of the exponential increase of ECDF probabilitie…

Electron-capture delayed fissionNuclear and High Energy PhysicsElectron captureFissionFusion–evaporation reaction236[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]236 Bk01 natural sciences7. Clean energyRecoil separatorNuclear physicsfusion-evaporation reactionsE236Bk240Es240 Es0103 physical sciencesddc:530010306 general physicsα decayisotopesPhysics240Isotopeta114Isotopes with mass 236–240010308 nuclear & particles physicslcsh:QC1-999Exponential functionBkmassAtomic physicsSaturation (chemistry)Fusion–evaporation reactionsα particleslcsh:PhysicsRadioactive decay
researchProduct

Nuclear structure dependence of fusion hindrance in heavy element synthesis

2018

The production of the heaviest elements in fusion-evaporation reactions is substantially limited by very low cross sections, as fusion cross sections (including fusion-fission) are greatly reduced by the competing quasifission mechanism. Using the Australian National University Heavy Ion Accelerator Facility and CUBE detector array, fission fragments from the $^{48}\mathrm{Ti}+^{204,208}\mathrm{Pb}$ and $^{50}\mathrm{Ti}+^{206,208}\mathrm{Pb}$ reactions have been measured, with the aim to investigate how the competition between quasifission and fusion-fission evolves with small changes in entrance-channel properties associated mainly with the nuclear structure. Analysis of mass-distribution…

PhysicsFusion010308 nuclear & particles physicsFissionNuclear TheoryNuclear structure7. Clean energy01 natural sciencesNuclear physics0103 physical sciencesProduction (computer science)Heavy ionHeavy elementDetector arrayNuclear Experiment010306 general physicsPhysical Review C
researchProduct

Mass-asymmetric fission in the 40ca+142Nd reaction

2016

Shell effects play a major role in fission. Mass-asymmetric fission observed in the spontaneous and low energy fission of actinide nuclei was explained by incorporating the fragment shell properties in liquid drop model. Asymmetric fission has also been observed in the low energy fission of neutron-deficient 180 Hg nuclei in recent β -delayed fission experiments. This low-energy β -delayed fission has been explained in terms of strong shell effects in pre-scission configurations associated with the system after capture. Calculations predicted asymmetric fission for heavier Hg isotopes as well, at compound nuclear excitation energy as high as 40 MeV. To explore the evolution of fission fragm…

Cold fissionCluster decay010308 nuclear & particles physicsNeutron emissionChemistryFissionIsotopes of samariumPhysicsQC1-999Nuclear TheoryFission product yield01 natural sciences0103 physical sciencesPhysics::Atomic and Molecular ClustersNeutronAtomic physics010306 general physicsNuclear ExperimentSpontaneous fissionEPJ Web of Conferences
researchProduct

Experimental study of the quasifission, fusion-fission, and de-excitation of Cf compound nuclei

2015

Background: The fusion-evaporation reaction at energies around the Coulomb barrier is presently the only way to produce the heaviest elements. However, formation of evaporation residues is strongly hindered due to the competing fusion-fission and quasifission processes. Presently, a full understanding of these processes and their relationships has not been reached.Purpose: This work aims to use new fission measurements and existing evaporation residue and fission excitation function data for reactions forming Cf isotopes to investigate the dependence of the quasifission probability and characteristics on the identities of the two colliding nuclei in heavy element formation reactions.Method:…

Excitation functionPhysicsNuclear and High Energy Physics010308 nuclear & particles physicsFissionCoulomb barrierFusion fission01 natural sciences0103 physical sciencesAtomic physicsDetector arrayHeavy elementNuclear Experiment010306 general physicsExcitationPhysical Review C
researchProduct

Observation of mass-asymmetric fission of mercury nuclei in heavy ion fusion

2015

Background: Mass-asymmetric fission has been observed in low energy fission of $^{180}\mathrm{Hg}$. Calculations predicted the persistence of asymmetric fission in this region even at excitation energies of 30--40 MeV.Purpose: To investigate fission mass distributions by populating different isotopes of Hg using heavy ion fusion reactions.Methods: Fission fragment mass-angle distributions have been measured for two reactions, $^{40}\mathrm{Ca}+^{142}\mathrm{Nd}$ and $^{13}\mathrm{C}+^{182}\mathrm{W}$, populating $^{182}\mathrm{Hg}$ and $^{195}\mathrm{Hg}$, respectively, using the Heavy Ion Accelerator Facility and CUBE spectrometer at the Australian National University. Measurements were ma…

PhysicsNuclear and High Energy Physicseducation.field_of_studyIsotopeSpectrometerFissionNuclear TheoryPopulationMass ratioSaddle pointNeutronAtomic physicsNuclear ExperimenteducationExcitationPhysical Review C
researchProduct