Indefinitely growing self-avoiding walk.
We introduce a new random walk with the property that it is strictly self-avoiding and grows forever. It belongs to a different universality class from the usual self-avoiding walk. By definition the critical exponent $\ensuremath{\gamma}$ is equal to 1. To calculate the exponent $\ensuremath{\nu}$ of the mean square end-to-end distance we have performed exact enumerations on the square lattice up to 22 steps. This gives the value $\ensuremath{\nu}=0.57\ifmmode\pm\else\textpm\fi{}0.01$.