0000000000552836

AUTHOR

Luigi Garziano

Single-step arbitrary control of mechanical quantum states in ultrastrong optomechanics

We describe how ultrastrong interactions in optomechanical systems can be used to force the system ground state to evolve into an arbitrary quantum state of mechanical motion in a completely controlled and deterministic manner. If the target quantum state is a superposition of $N$ Fock states, it can be obtained by applying in single-step $N$ classical optical signals of different frequencies for a common time interval. This protocol can be applied to various strongly interacting quantum systems as trapped ions beyond the Lamb-Dicke regime and cavity QED into the ultrastrong coupling regime.

research product

Output Field-Quadrature Measurements and Squeezing in Ultrastrong Cavity-QED

We study the squeezing of output quadratures of an electro-magnetic field escaping from a resonator coupled to a general quantum system with arbitrary interaction strengths. The generalized theoretical analysis of output squeezing proposed here is valid for all the interaction regimes of cavity-quantum electrodynamics: from the weak to the strong, ultrastrong, and deep coupling regimes. For coupling rates comparable or larger then the cavity resonance frequency, the standard input–output theory for optical cavities fails to calculate the variance of output field-quadratures and predicts a non-negligible amount of output squeezing, even if the system is in its ground state. Here we show that…

research product

Quantum control and long-range quantum correlations in dynamical Casimir arrays

The recent observation of the dynamical Casimir effect in a modulated superconducting waveguide, coronating thirty years of world-wide research, empowered the quantum technology community with a powerful tool to create entangled photons on-chip. In this work we show how, going beyond the single waveguide paradigm using a scalable array, it is possible to create multipartite nonclassical states, with the possibility to control the long-range quantum correlations of the emitted photons. In particular, our finite-temperature theory shows how maximally entangled $NOON$ states can be engineered in a realistic setup. The results here presented open the way to new kinds of quantum fluids of light,…

research product