0000000000553040

AUTHOR

Sang-woon Kim

Multinomial Sequence Based Estimation Using Contiguous Subsequences of Length Three

research product

Occlusion-based estimation of independent multinomial random variables using occurrence and sequential information

Abstract This paper deals with the relatively new field of sequence-based estimation in which the goal is to estimate the parameters of a distribution by utilizing both the information in the observations and in their sequence of appearance. Traditionally, the Maximum Likelihood (ML) and Bayesian estimation paradigms work within the model that the data, from which the parameters are to be estimated, is known, and that it is treated as a set rather than as a sequence. The position that we take is that these methods ignore, and thus discard, valuable sequence -based information, and our intention is to obtain ML estimates by “extracting” the information contained in the observations when perc…

research product

A solution to the stochastic point location problem in metalevel nonstationary environments.

This paper reports the first known solution to the stochastic point location (SPL) problem when the environment is nonstationary. The SPL problem involves a general learning problem in which the learning mechanism (which could be a robot, a learning automaton, or, in general, an algorithm) attempts to learn a "parameter," for example, lambda*, within a closed interval. However, unlike the earlier reported results, we consider the scenario when the learning is to be done in a nonstationary setting. For each guess, the environment essentially informs the mechanism, possibly erroneously (i.e., with probability p), which way it should move to reach the unknown point. Unlike the results availabl…

research product

On using prototype reduction schemes to optimize locally linear reconstruction methods

Authors version of an article published in the journal: Pattern Recognition. Also available from the publisher at: http://dx.doi.org/10.1016/j.patcog.2011.06.021 This paper concerns the use of prototype reduction schemes (PRS) to optimize the computations involved in typical k-nearest neighbor (k-NN) rules. These rules have been successfully used for decades in statistical pattern recognition (PR) [1,15] applications and are particularly effective for density estimation, classification, and regression because of the known error bounds that they possess. For a given data point of unknown identity, the k-NN possesses the phenomenon that it combines the information about the samples from a pri…

research product

On the Foundations of Multinomial Sequence Based Estimation

research product

On Optimizing Locally Linear Nearest Neighbour Reconstructions Using Prototype Reduction Schemes

Published version of an article from the Book: AI 2010: Advances in Artificial Intelligence, Spinger. Also available on Springerlink: http://dx.doi.org/10.1007/978-3-642-17432-2_16 This paper concerns the use of Prototype Reduction Schemes (PRS) to optimize the computations involved in typical k-Nearest Neighbor (k-NN) rules. These rules have been successfully used for decades in statistical Pattern Recognition (PR) applications, and have numerous applications because of their known error bounds. For a given data point of unknown identity, the k-NN possesses the phenomenon that it combines the information about the samples from a priori target classes (values) of selected neighbors to, for …

research product

On Optimizing Locally Linear Nearest Neighbour Reconstructions Using Prototype Reduction Schemes

This paper concerns the use of Prototype Reduction Schemes (PRS) to optimize the computations involved in typical k-Nearest Neighbor (k-NN) rules. These rules have been successfully used for decades in statistical Pattern Recognition (PR) applications, and have numerous applications because of their known error bounds. For a given data point of unknown identity, the k-NN possesses the phenomenon that it combines the information about the samples from a priori target classes (values) of selected neighbors to, for example, predict the target class of the tested sample. Recently, an implementation of the k-NN, named as the Locally Linear Reconstruction (LLR) [11], has been proposed. The salien…

research product