0000000000554256
AUTHOR
Linda Podio
Empirical determination of Einstein A-coefficient ratios of bright [Fe II] lines
The Einstein spontaneous rates (A-coefficients) of Fe+ lines have been computed by several authors with results that differ from each other by up to 40%. Consequently, models for line emissivities suffer from uncertainties that in turn affect the determination of the physical conditions at the base of line excitation. We provide an empirical determination of the A-coefficient ratios of bright [Fe II] lines that would represent both a valid benchmark for theoretical computations and a reference for the physical interpretation of the observed lines. With the ESO-Very Large Telescope X-shooter instrument between 3000 Å and 24700 Å, we obtained a spectrum of the bright Herbig-Haro object HH 1. …
The diagnostic potential of Fe lines applied to protostellar jets
We investigate the diagnostic capabilities of the iron lines for tracing the physical conditions of the shock-excited gas in jets driven by pre-main sequence stars. We have analyzed the 300-2500 nm X-shooter spectra of two jets driven by the pre-main sequence stars ESO-Halpha 574 and Par-Lup 3-4. Both spectra are very rich in [FeII] lines over the whole spectral range; in addition, lines from [FeIII] are detected in the ESO-H\alpha 574 spectrum. NLTE codes along with codes for the ionization equilibrium are used to derive the gas excitation conditions of electron temperature and density, and fractional ionization. The iron gas-phase abundance is provided by comparing the iron lines emissivi…
Ariel: Enabling planetary science across light-years
Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, was adopted as the fourth medium-class mission in ESA's Cosmic Vision programme to be launched in 2029. During its 4-year mission, Ariel will study what exoplanets are made of, how they formed and how they evolve, by surveying a diverse sample of about 1000 extrasolar planets, simultaneously in visible and infrared wavelengths. It is the first mission dedicated to measuring the chemical composition and thermal structures of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of the Solar System. The payload consists of an off-axis Cassegrain telescope (primary mirror 1100 mm x 730 mm e…
The water trail from the cradle of a young Sun to Earth-like planets
El agua es un ingrediente crucial para la vida. Una de las áreas de investigación más fascinantes en el campo de la astrobiología y la astroquímica es la del origen del agua sobre la Tierra. Sabemos que nuestros océanos contienen una cantidad de agua igual a 3 diezmilésimas de la masa terrestre. Sin embargo, si consideramos también el agua presente bajo la costra terrestre, el total podría aumentar a entre 10 y 50 veces más. Existen muchas cuestiones por resolver, como por ejemplo: ¿Cuándo y cómo apareció el agua sobre la Tierra? ¿Nuestro planeta es un caso especial o hay agua, y posiblemente vida, en otros planetas de nuestra Galaxia? Con más de 1000 exoplanetas descubiertos y las estadíst…
ESO-Hα 574 and Par-Lup 3-4 jets: Exploring the spectral, kinematical, and physical properties
In this paper a comprehensive analysis of VLT / X-Shooter observations of two jet systems, namely ESO-H$\alpha$ 574 a K8 classical T Tauri star and Par-Lup 3-4 a very low mass (0.13~\Msun) M5 star, is presented. Both stars are known to have near-edge on accretion disks. A summary of these first X-shooter observations of jets was given in a 2011 letter. The new results outlined here include flux tables of identified emission lines, information on the morphology, kinematics and physical conditions of both jets and, updated estimates of $\dot{M}_{out}$ / $\dot{M}_{acc}$. Asymmetries in the \eso flow are investigated while the \para jet is much more symmetric. The density, temperature, and ther…