0000000000555379

AUTHOR

Jeanette Escobar

Atom-Based Quadratic Indices to Predict Aquatic Toxicity of Benzene Derivatives to <i>Tetrahymena pyriformis</i>

The non-stochastic and stochastic atom-based quadratic indices are applied to develop quantitative structure-activity relationship (QSAR) models for the prediction of aquatic toxicity. The used dataset, consisting of 392 benzene derivatives for which toxicity data to the ciliate Tetrahymena pyriformis were available, is divided into training and test sets. The obtained multiple linear regression models are statistically significant (R2 = 0.787 and s = 0.347, R2 = 0.806 and s = 0.329, for non-stochastic and stochastic quadratic indices, respectively) and show rather good stability in a cross-validation experiment (q2 = 0.769 and scv = 0.357, q2 = 0.791 and scv = 0.337, correspondingly). In a…

research product

A novel approach to predict aquatic toxicity from molecular structure

The main aim of the study was to develop quantitative structure-activity relationship (QSAR) models for the prediction of aquatic toxicity using atom-based non-stochastic and stochastic linear indices. The used dataset consist of 392 benzene derivatives, separated into training and test sets, for which toxicity data to the ciliate Tetrahymena pyriformis were available. Using multiple linear regression, two statistically significant QSAR models were obtained with non-stochastic (R2=0.791 and s=0.344) and stochastic (R2=0.799 and s=0.343) linear indices. A leave-one-out (LOO) cross-validation procedure was carried out achieving values of q2=0.781 (scv=0.348) and q2=0.786 (scv=0.350), respecti…

research product