0000000000557463
AUTHOR
Brice Effantin
The b-chromatic number of power graphs
The b-chromatic number of a graph G is defined as the maximum number k of colors that can be used to color the vertices of G, such that we obtain a proper coloring and each color i, with 1 ≤ i≤ k, has at least one representant x_i adjacent to a vertex of every color j, 1 ≤ j ≠ i ≤ k. In this paper, we discuss the b-chromatic number of some power graphs. We give the exact value of the b-chromatic number of power paths and power complete binary trees, and we bound the b-chromatic number of power cycles.
Generation of Valid Labeled Binary Trees
International audience; Generating binary trees is a well-known problem. In this paper, we add some constraints to leaves of these trees. Such trees are used in the morphing of polygons, where a polygon P is represented by a binary tree T and each angle of P is a weight on a leaf of T. In the following, we give two algorithms to generate all binary trees, without repetitions, having the same weight distribution to their leaves and representing all parallel polygons to P.
On parameterized complexity to determine b-chromatic and partial Grundy numbers
International audience