0000000000557472

AUTHOR

Dennis Chercka

Charge transfer in the novel donor-acceptor complexes tetra- and hexamethoxypyrene with tetracyanoquinodimethane studied by HAXPES

Abstract The effect of charge transfer (CT) in complexes of the donors tetra - and hexamethoxyprene ( TMP and HMP ) with the classical acceptor tetracyanoquinodimethane ( TCNQ ) was studied using hard X-ray photoemission (HAXPES). Microcrystals of the complex were grown via vapour diffusion from donor–acceptor mixtures. The bulk sensitivity of HAXPES at a photon energy of 6 keV completely eliminates the problem of surface contamination for such delicate organic materials grown from solution. The donor molecules were produced using a novel synthesis route functionalizing polycyclic aromatic hydrocarbons at their periphery. For comparison, spectra were also taken from thin-film samples of the…

research product

Orbital-Resolved Partial Charge Transfer from the Methoxy Groups of Substituted Pyrenes in Complexes with Tetracyanoquinodimethane—A NEXAFS Study

It is demonstrated that the near-edge X-ray absorption fine structure (NEXAFS) provides a powerful local probe of functional groups in novel charge transfer (CT) compounds and their electronic properties. Microcrystals of tetra-/hexamethoxypyrene as donors with the strong acceptor tetracyano-p-quinodimethane (TMP/HMP-TCNQ) were grown by vapor diffusion. The oxygen and nitrogen K-edge spectra are spectroscopic fingerprints of the functional groups in the donor and acceptor moieties, respectively. The orbital selectivity of the NEXAFS pre-edge resonances allows us to precisely elucidate the participation of specific orbitals in the charge transfer process. Upon complex formation, the intensit…

research product

Formation of an intermolecular charge-transfer compound in UHV codeposited tetramethoxypyrene and tetracyanoquinodimethane

Ultrahigh vacuum (UHV)-deposited films of the mixed phase of tetramethoxypyrene and tetracyanoquinodimethane $({\text{TMP}}_{1}{\text{-TCNQ}}_{1})$ on gold have been studied using ultraviolet photoelectron spectroscopy (UPS), x-ray diffraction (XRD), infrared (IR) spectroscopy, and scanning tunneling spectroscopy (STS). The formation of an intermolecular charge-transfer (CT) compound is evident from the appearance of new reflexes in XRD (${d}_{1}=0.894\text{ }\text{nm}$ and ${d}_{2}=0.677\text{ }\text{nm}$). A softening of the CN stretching vibration (redshift by $7\text{ }{\text{cm}}^{\ensuremath{-}1}$) of TCNQ is visible in the IR spectra, being indicative of a CT on the order of $0.3e$ f…

research product