Robustness with Respect to Delay Uncertainties of a Predictor-Observer Based Discrete-Time Controller
This paper focuses on the delay-dependent stability problem of a discrete-time prediction scheme to stabilize possible unstable continuous-time systems. The delay-dependent stability condition is expressed in terms of LMIs. The separation principle between the proposed predictor and a state observer is also proved. The closed-loop system is shown to be robust with respect to uncertainties in the knowledge on the plant parameters, the delay and the sampling period. The proposed scheme has been tested in a real-time application to control the roll angle in a prototype of a quad-rotor mini-helicopter.