0000000000557859

AUTHOR

Attila Fülöp

Triply resonant coherent four-wave mixing in silicon nitride microresonators

The generation of multiple tones using four-wave mixing (FWM) has been exploited for many applications, ranging from wavelength conversion to frequency comb generation. FWM is a coherent process, meaning that its dynamics strongly depends on the relative phase among the waves involved. The coherent nature of FWM has been exploited for phase-sensitive processing in different waveguide structures, but it has never been studied in integrated microresonators. Waveguides arranged in a resonant way allow for an effective increase in the wavelength conversion efficiency (at the expense of a reduction in the operational bandwidth). In this letter, we show that phase shaping of a three-wave pump pro…

research product

Hot-cavity spectroscopy of dark pulse Kerr combs in microresonators

Kerr frequency combs are generated through cascaded four-wave mixing in high-Q microresonators [1]. These devices are pumped with a continuous-wave laser and modulational instability (MI) is responsible for the growth of the initial comb lines. Since it is easier to satisfy the MI phase matching condition in the anomalous dispersion regime, most studies on Kerr combs have focused on anomalous dispersion microresonators. However, coherent microresonator combs can also take place in the normal dispersion regime. In these combs, phase matching is attained with the aid of the mode coupling between transverse modes of the microresonator [2]. One particularly interesting comb state that operates …

research product

Switching Dynamics of Dark Solitons in Kerr Microresonators

Dissipative Kerr solitons (DKS) are localized structures in optical resonators that arise from a double balance between dispersion and Kerr effect, and linear loss and parametric gain [1]. The periodic nature of DKS corresponds to frequency combs. DKS can be generated in high-Q microresonators for diverse applications, from coherent communications to precision frequency synthesis [1]. Most studies of DKS have focused on microresonator cavities operating in the anomalous dispersion regime, where the waveforms correspond to bright soliton pulses. Coherent microresonator combs can also be formed in the normal dispersion regime [2]. The time-domain waveform corresponds to a localized dark-pulse…

research product

Switching dynamics of dark-pulse Kerr frequency comb states in optical microresonators

Dissipative Kerr solitons are localized structures that exist in nonlinear optical cavities. They lead to the formation of microcombs - chip-scale frequency combs that could facilitate precision frequency synthesis and metrology by capitalizing on advances in silicon photonics. Previous demonstrations have mainly focused on anomalous dispersion cavities. Notwithstanding, localized structures also exist in the normal dispersion regime in the form of circulating dark pulses, but their physical dynamics is far from being understood. Here, we explore dark-pulse Kerr combs generated in normal dispersion optical microresonators and report the discovery of reversible switching between coherent dar…

research product