0000000000559028

AUTHOR

Nadine Kaiser

Understanding Cannabinoid Psychoactivity with Mouse Genetic Models

Marijuana and its main psychotropic ingredient Δ9-tetrahydrocannabinol (THC) exert a plethora of psychoactive effects through the activation of the neuronal cannabinoid receptor type 1 (CB1), which is expressed by different neuronal subpopulations in the central nervous system. The exact neuroanatomical substrates underlying each effect of THC are, however, not known. We tested locomotor, hypothermic, analgesic, and cataleptic effects of THC in conditional knockout mouse lines, which lack the expression of CB1 in different neuronal subpopulations, including principal brain neurons, GABAergic neurons (those that release γ aminobutyric acid), cortical glutamatergic neurons, and neurons expres…

research product

Circuit Specific Functions of Cannabinoid CB1 Receptor in the Balance of Investigatory Drive and Exploration

Well balanced novelty seeking and exploration are fundamental behaviours for survival and are found to be dysfunctional in several psychiatric disorders. Recent studies suggest that the endocannabinoid (eCB) system is an important control system for investigatory drive. Pharmacological treatment of rodents with cannabinergic drugs results in altered social and object investigation. Interestingly, contradictory results have been obtained, depending on the treatment, drug concentration and experimental conditions. The cannabinoid type 1 (CB1) receptor, a central component of the eCB system, is predominantly found at the synapses of two opposing neuronal populations, i.e. on inhibitory GABAerg…

research product

Reduced anxiety-like behaviour induced by genetic and pharmacological inhibition of the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH) is mediated by CB1 receptors

Anandamide and 2-arachidonoyl glycerol, referred to as endocannabinoids (eCBs), are the endogenous agonists for the cannabinoid receptor type 1 (CB1). Several pieces of evidence support a role for eCBs in the attenuation of anxiety-related behaviours, although the precise mechanism has remained uncertain. The fatty acid amid hydrolase (FAAH), an enzyme responsible for the degradation of eCBs, has emerged as a promising target for anxiety-related disorders, since FAAH inhibitors are able to increase the levels of anandamide and thereby induce anxiolytic-like effects in rodents. The present study adopted both genetic and pharmacological approaches and tested the hypothesis that FAAH-deficient…

research product

Cannabinoid CB1 receptor in dorsal telencephalic glutamatergic neurons: distinctive sufficiency for hippocampus-dependent and amygdala-dependent synaptic and behavioral functions.

A major goal in current neuroscience is to understand the causal links connecting protein functions, neural activity, and behavior. The cannabinoid CB1 receptor is expressed in different neuronal subpopulations, and is engaged in fine-tuning excitatory and inhibitory neurotransmission. Studies using conditional knock-out mice revealed necessary roles of CB1 receptor expressed in dorsal telencephalic glutamatergic neurons in synaptic plasticity and behavior, but whether this expression is also sufficient for brain functions is still to be determined. We applied a genetic strategy to reconstitute full wild-type CB1 receptor functions exclusively in dorsal telencephalic glutamatergic neurons a…

research product

Using Clicker Training and Social Observation to Teach Rats to Voluntarily Change Cages.

Cage cleaning is a routinely performed husbandry procedure and is known to induce stress in laboratory rats. As stress can have a negative impact on well-being and can affect the comparability and reproducibility of research results, the amount of stress experienced by laboratory animals should be minimized and avoided when possible. Further, the direct contact between the rat and animal caretaker during the cage change bears hygiene risks and therefore possibly negatively impacts the well-being of the rats and the quality of the research. Our protocol aims to improve the routinely performed cage changing procedure. For this reason, we present a feasible protocol that enables rats to learn …

research product