0000000000559645

AUTHOR

Vitaly Alexandrov

First-principles modeling of oxygen interaction with SrTiO3(001) surface: Comparative density-functional LCAO and plane-wave study

Large scale first-principles calculations based on density functional theory (DFT) employing two different methods (atomic orbitals and plane wave basis sets) were used to study the energetics, geometry, the electronic charge redistribution and migration for adsorbed atomic and molecular oxygen on defect-free SrTiO3(001) surfaces (both SrO- and TiO2-terminated), which serves as a prototype for many ABO3-type perovskites. Both methods predict substantial binding energies for atomic O adsorption at the bridge position between the oxygen surface ions and an adjacent metal ion. A strong chemisorption is caused by formation of a surface molecular peroxide ion. In contrast, the neutral molecular …

research product

First-principles study of bulk and surface oxygen vacancies in SrTiO3 crystal

The structural and electronic properties of the neutral and positively charged oxygen vacancies (F and F + centres) in the bulk and on the (001) surfaces of SrTiO3 crystal are examined within the hybrid Hartree-Fock and density functional theory (HF-DFT) method based upon the linear combination of atomic orbital (LCAO) approach. A comparison of the formation energy for surface and bulk defects indicates a perceptible propensity for the segregation of neutral and charged vacancies to both SrO and TiO2 surface terminations with a preference in the latter case which is important for interpretation of space charge effects at ceramic interfaces. It is found that the vacancies reveal more shallow…

research product