Impact of Helium Ion Implantation Dose and Annealing on Dense Near-Surface Layers of NV Centers
A. Berzins acknowledges support from Latvian Council of Science project lzp-2021/1-0379, “A novel solution for high magnetic field and high electric current stabilization using color centers in diamond,” and LLC “MikroTik” donation project, administered by the UoL foundation, “Improvement of Magnetic field imaging system” for the opportunity to significantly improve experimental setup as well as “Simulations for stimulation of science” for the opportunity to acquire COMSOL license. I. Fescenko acknowledges support from ERAF project 1.1.1.5/20/A/001, and I.F. and A.B. acknowledge support from LLC “MikroTik” donation project “Annealing furnace for the development of new nanometer-sized sensor…
Magnetic field microscopy with concentrated bias field
Surface magnetic structure investigation of a nanolaminated Mn$_2$GaC thin film using a magnetic field microscope based on Nitrogen-Vacancy centers
This work presents a magnetic field imaging method based on color centers in diamond crystal applied to a thin film of a nanolaminated Mn$_2$GaC MAX phase. Magnetic properties of the surface related structures have been described around the first order transition at 214 K by performing measurements in the temperature range between 200 K and 235 K with the surface features fading out by increasing temperature above the transition temperature. The results presented here demonstrate how Nitrogen-Vacancy center based magnetic microscopy can supplement the traditionally used set of experimental techniques, giving additional information of microscopic scale magnetic field features, and allowing t…